1
IIT-JEE 2008 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Let $$f$$ and $$g$$ be real valued functions defined on interval $$(-1, 1)$$ such that $$g''(x)$$ is continuous, $$g\left( 0 \right) \ne 0.$$ $$g'\left( 0 \right) = 0$$, $$g''\left( 0 \right) \ne 0$$, and $$f\left( x \right) = g\left( x \right)\sin x$$

STATEMENT - 1: $$\mathop {\lim }\limits_{x \to 0} \,\,\left[ {g\left( x \right)\cot x - g\left( 0 \right)\cos ec\,x} \right] = f''\left( 0 \right)$$ and

STATEMENT - 2: $$f'\left( 0 \right) = g\left( 0 \right)$$

A
Statement - 1 is True, Statement - 2 is True; Statement - 2 is a correct explanation for Statement - 1
B
Statement - 1 is True, Statement - 2 is True; Statement - 2 is NOT a correct explanation for Statement - 1
C
Statement - 1 is True, Statement -2 is False
D
Statement - 1 is False, Statement -2 is True
2
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
$${{{d^2}x} \over {d{y^2}}}$$ equals
A
$${\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}$$
B
$$ - {\left( {{{{d^2}y} \over {d{x^2}}}} \right)^{ - 1}}{\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
C
$$\left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 2}}$$
D
$$ - \left( {{{{d^2}y} \over {d{x^2}}}} \right){\left( {{{dy} \over {dx}}} \right)^{ - 3}}$$
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
Let $$\,\,\,$$$$f\left( x \right) = 2 + \cos x$$ for all real $$X$$.

STATEMENT - 1: for eachreal $$t$$, there exists a point $$c$$ in $$\left[ {t,t + \pi } \right]$$ such that $$f'\left( c \right) = 0$$ because
STATEMENT - 2: $$f\left( t \right) = f\left( {t + 2\pi } \right)$$ for each real $$t$$.

A
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
B
Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
C
Statement-1 is True, Statement-2 is False
D
Statement-1 is False, Statement-2 is True.
4
IIT-JEE 2005 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$f(x)$$ is a twice differentiable function and given that $$f\left( 1 \right) = 1;f\left( 2 \right) = 4,f\left( 3 \right) = 9$$, then
A
$$f''\left( x \right) = 2$$ for $$\forall x \in \left( {1,3} \right)$$
B
$$f''\left( x \right) = f'\left( x \right) = 5$$ for some $$x \in \left( {2,3} \right)$$
C
$$f''\left( x \right) = 3$$ for $$\forall x \in \left( {2,3} \right)$$
D
$$f''\left( x \right) = 2$$ for some $$x \in \left( {1,3} \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12