1
IIT-JEE 2003
Subjective
+4
-0
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$
2
IIT-JEE 2003
Subjective
+4
-0
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
3
IIT-JEE 2002
Subjective
+5
-0
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$\,\,\,\,\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k,$$ $$\,\,\,\,\,\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k.$$ where $$r=1, 2, 3,$$ are non-negative real numbers and $$\sum\limits_{r = 1}^3 {\left( {{a_r} + {b_r} + {c_r}} \right) = 3L,} $$ show that $$V \le {L^3}\,\,.$$
4
IIT-JEE 2001
Subjective
+5
-0
Show, by vector methods, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12