1
IIT-JEE 1987
Subjective
+2
-0
If $$A, B, C, D$$ are any four points in space, prove that -
$$\left| {\overrightarrow {AB} \times \overrightarrow {CD} + \overrightarrow {BC} \times \overrightarrow {AD} + \overrightarrow {CA} \times \overrightarrow {BD} } \right| = 4$$ (area of triangle $$ABC$$)
$$\left| {\overrightarrow {AB} \times \overrightarrow {CD} + \overrightarrow {BC} \times \overrightarrow {AD} + \overrightarrow {CA} \times \overrightarrow {BD} } \right| = 4$$ (area of triangle $$ABC$$)
2
IIT-JEE 1986
Subjective
+3
-0
The position vectors of the points $$A, B, C$$ and $$D$$ are $$3\widehat i - 2\widehat j - \widehat k,\,2\widehat i + 3\widehat j - 4\widehat k,\, - \widehat i + \widehat j + 2\widehat k$$ and $$4\widehat i + 5\widehat j + \lambda \widehat k,$$
respectively. If the points $$A, B, C$$ and $$D$$ lie on a plane, find the value of $$\lambda .$$
respectively. If the points $$A, B, C$$ and $$D$$ lie on a plane, find the value of $$\lambda .$$
3
IIT-JEE 1982
Subjective
+2
-0
$${A_1},{A_2},.................{A_n}$$ are the vertices of a regular plane polygon with $$n$$ sides and $$O$$ is its centre. Show that
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
$$\sum\limits_{i = 1}^{n - 1} {\left( {\overrightarrow {O{A_i}} \times {{\overrightarrow {OA} }_{i + 1}}} \right) = \left( {1 - n} \right)\left( {{{\overrightarrow {OA} }_2} \times {{\overrightarrow {OA} }_1}} \right)} $$
4
IIT-JEE 1982
Subjective
+3
-0
Find all values of $$\lambda $$ such that $$x, y, z,$$$$\, \ne $$$$(0,0,0)$$ and
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
$$\left( {\overrightarrow i + \overrightarrow j + 3\overrightarrow k } \right)x + \left( {3\overrightarrow i - 3\overrightarrow j + \overrightarrow k } \right)y + \left( { - 4\overrightarrow i + 5\overrightarrow j } \right)z$$
$$ = \lambda \left( {x\overrightarrow i \times \overrightarrow j \,\,y + \overrightarrow k \,z} \right)$$ where $$\overrightarrow i ,\,\,\overrightarrow j ,\,\,\overrightarrow k $$ are unit vectors along the coordinate axes.
Questions Asked from Vector Algebra (Subjective)
Number in Brackets after Paper Indicates No. of Questions
IIT-JEE 2006 (1)
IIT-JEE 2005 (1)
IIT-JEE 2004 (1)
IIT-JEE 2003 (1)
IIT-JEE 2002 (1)
IIT-JEE 2001 (3)
IIT-JEE 1999 (1)
IIT-JEE 1998 (2)
IIT-JEE 1997 (1)
IIT-JEE 1994 (1)
IIT-JEE 1993 (1)
IIT-JEE 1991 (1)
IIT-JEE 1990 (1)
IIT-JEE 1989 (2)
IIT-JEE 1988 (1)
IIT-JEE 1987 (1)
IIT-JEE 1986 (1)
IIT-JEE 1982 (2)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus