1
IIT-JEE 2004
Subjective
+2
-0
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are distinct vectors such that
$$\,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \,.$$ Prove that
$$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) \ne 0\,\,i.e.\,\,\,\overrightarrow a .\overrightarrow b + \overrightarrow d .\overrightarrow c \ne \overrightarrow d .\overrightarrow b + \overrightarrow a .\overrightarrow c $$
2
IIT-JEE 2003
Subjective
+4
-0
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$
3
IIT-JEE 2002
Subjective
+5
-0
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$\,\,\,\,\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k,$$ $$\,\,\,\,\,\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k.$$ where $$r=1, 2, 3,$$ are non-negative real numbers and $$\sum\limits_{r = 1}^3 {\left( {{a_r} + {b_r} + {c_r}} \right) = 3L,} $$ show that $$V \le {L^3}\,\,.$$
4
IIT-JEE 2001
Subjective
+5
-0
Find $$3-$$dimensional vectors $${\overrightarrow v _1},{\overrightarrow v _2},{\overrightarrow v _3}$$ satisfying
$$\,{\overrightarrow v _1}.{\overrightarrow v _1} = 4,\,{\overrightarrow v _1}.{\overrightarrow v _2} = - 2,\,{\overrightarrow v _1}.{\overrightarrow v _3} = 6,\,\,{\overrightarrow v _2}.{\overrightarrow v _2}$$
$$ = 2,\,{\overrightarrow v _2}.{\overrightarrow v _3} = - 5,\,{\overrightarrow v _3}.{\overrightarrow v _3} = 29$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12