1
GATE ECE 2004
+2
-0.6
Consider the Bode magnitude plot shown in figure. The transfer function H(s) is
A
$${{\left( {s + 10} \right)} \over {\left( {s + 1} \right)\left( {s + 100} \right)}}$$
B
$${{10\left( {s + 1} \right)} \over {\left( {s + 10} \right)\left( {s + 100} \right)}}$$
C
$${{{{10}^2}\left( {s + 1} \right)} \over {\left( {s + 10} \right)\left( {s + 100} \right)}}$$
D
$${{{{10}^3}\left( {s + 100} \right)} \over {\left( {s + 1} \right)\left( {s + 10} \right)}}$$
2
GATE ECE 2004
+2
-0.6
A system has poles at 0.01 Hz, 1Hz and 80 Hz; zeroes at 5hz, 100 Hz and 200 Hz. The approximate phase of the system response at 20 Hz is
A
$$- {90^0}$$
B
$${0^0}$$
C
$${90^0}$$
D
$${-180^0}$$
3
GATE ECE 2003
+2
-0.6
The approximate Bode magnitude plot of a minimum-phase system is shown in figure. The transfer function of the system is
A
$${10^8}{{{{\left( {s + 0.1} \right)}^3}} \over {{{\left( {s + 10} \right)}^2}\left( {s + 100} \right)}}$$
B
$${10^7}{{{{\left( {s + 0.1} \right)}^3}} \over {{{\left( {s + 10} \right)}}\left( {s + 100} \right)}}$$
C
$${10^8}{{{{\left( {s + 0.1} \right)}^2}} \over {{{\left( {s + 10} \right)}^2}\left( {s + 100} \right)}}$$
D
$${10^9}{{{{\left( {s + 0.1} \right)}^3}} \over {\left( {s + 10} \right){{\left( {s + 100} \right)}^2}}}$$
4
GATE ECE 2003
+2
-0.6
The gain margin and the phase margin of a feedback system with G(s)H(s)=$${s \over {{{\left( {s + 100} \right)}^3}}}$$ are
A
0 dB, $${0^0}$$
B
$$\infty ,\infty$$
C
$$\infty ,{0^0}$$
D
88.5 dB, $$\infty$$
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination