1
GATE ECE 2008
+2
-0.6
The impulse response h(t) of a linear time invariant system is given by h(t) = $${e^{ - 2t}}u(t),$$ where u(t) denotes the unit step function.

The output of this system to the sinusoidal input x(t) = 2cos(t) for all time 't' is

A
$$0$$
B
$${2^{ - 0.25}}\cos \left( {2t - 0.125\pi } \right)$$
C
$${2^{ - 0.5}}\cos \left( {2t - 0.125\pi } \right)$$
D
$${2^{ - 0.5}}\cos \left( {2t - 0.25\pi } \right)$$
2
GATE ECE 2007
+2
-0.6
The asymptotic Bode plot of a transfer function is shown in the figure. the transfer function G(s) corresponding to this bode plot is A
$${1 \over {\left( {s + 1} \right)\left( {s + 20} \right)}}$$
B
$${1 \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
C
$${{100} \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
D
$${{100} \over {s\left( {s + 1} \right)\left( {1 + 0.05s} \right)}}$$
3
GATE ECE 2006
+2
-0.6
Consider two transfer functions $${G_1}\left( s \right) = {1 \over {{s^2} + as + b}}$$ and $${G_2}\left( s \right) = {s \over {{s^2} + as + b}}.$$ The 3-dB bandwidths of their frequency responses are, respectively
A
$$\sqrt {{a^2} - 4b,}$$ $$\sqrt {{a^2} + 4b,}$$
B
$$\sqrt {{a^2} - 4b,}$$ $$\sqrt {{a^2} - 4b,}$$
C
$$\sqrt {{a^2} + 4b,}$$ $$\sqrt {{a^2} - 4b,}$$
D
$$\sqrt {{a^2} + 4b,}$$ $$\sqrt {{a^2} + 4b,}$$
4
GATE ECE 2006
+2
-0.6
The Nyquist plot of G(jω)H(jω) for a closed loop control system, passes through (-1,j0) point in the GH plane. The gain margin of the system in dB is equal to
A
infinite
B
greater than zero
C
less than zero
D
zero
GATE ECE Subjects
Signals and Systems
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics
EXAM MAP
Joint Entrance Examination