1
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The impulse response h(t) of a linear time invariant system is given by h(t) = $${e^{ - 2t}}u(t),$$ where u(t) denotes the unit step function.

The output of this system to the sinusoidal input x(t) = 2cos(t) for all time 't' is

A
$$0$$
B
$${2^{ - 0.25}}\cos \left( {2t - 0.125\pi } \right)$$
C
$${2^{ - 0.5}}\cos \left( {2t - 0.125\pi } \right)$$
D
$${2^{ - 0.5}}\cos \left( {2t - 0.25\pi } \right)$$
2
GATE ECE 2007
MCQ (Single Correct Answer)
+2
-0.6
The asymptotic Bode plot of a transfer function is shown in the figure. the transfer function G(s) corresponding to this bode plot is
A
$${1 \over {\left( {s + 1} \right)\left( {s + 20} \right)}}$$
B
$${1 \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
C
$${{100} \over {s\left( {s + 1} \right)\left( {s + 20} \right)}}$$
D
$${{100} \over {s\left( {s + 1} \right)\left( {1 + 0.05s} \right)}}$$
3
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider two transfer functions $${G_1}\left( s \right) = {1 \over {{s^2} + as + b}}$$ and $${G_2}\left( s \right) = {s \over {{s^2} + as + b}}.$$ The 3-dB bandwidths of their frequency responses are, respectively
A
$$\sqrt {{a^2} - 4b,}$$ $$\sqrt {{a^2} + 4b,}$$
B
$$\sqrt {{a^2} - 4b,}$$ $$\sqrt {{a^2} - 4b,}$$
C
$$\sqrt {{a^2} + 4b,}$$ $$\sqrt {{a^2} - 4b,}$$
D
$$\sqrt {{a^2} + 4b,}$$ $$\sqrt {{a^2} + 4b,}$$
4
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The Nyquist plot of G(jω)H(jω) for a closed loop control system, passes through (-1,j0) point in the GH plane. The gain margin of the system in dB is equal to
A
infinite
B
greater than zero
C
less than zero
D
zero
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12