1
IIT-JEE 1987
MCQ (Single Correct Answer)
+2
-0.5
The smallest positive root of the equation, $$\tan x - x = 0$$ lies in
A
$$\left( {0,{\pi \over 2}} \right)$$
B
$$\left( {{\pi \over 2},\pi } \right)$$
C
$$\left( {\pi ,{{3\pi } \over 2}} \right)$$
D
$$\left( {{{3\pi } \over 2},2\pi } \right)$$
2
IIT-JEE 1987
MCQ (Single Correct Answer)
+2
-0.5
Let $$f$$ and $$g$$ be increasing and decreasing functions, respectively from $$\left[ {0,\infty } \right)$$ to $$\left[ {0,\infty } \right)$$. Let $$h\left( x \right) = f\left( {g\left( x \right)} \right).$$ If $$h\left( 0 \right) = 0,$$ then $$h\left( x \right) - h\left( 1 \right)$$ is
A
always zero
B
always negative
C
always positive
D
strictly increasing
3
IIT-JEE 1986
MCQ (Single Correct Answer)
+2
-0.5
Let $$P\left( x \right) = {a_0} + {a_1}{x^2} + {a_2}{x^4} + ...... + {a_n}{x^{2n}}$$ be a polynomial in a real variable $$x$$ with
$$0 < {a_0} < {a_1} < {a_2} < ..... < {a_n}.$$ The function $$P(x)$$ has
A
neither a maximum nor a minimum
B
only one maximum
C
only one minimum
D
only one maximum and only one minimum
4
IIT-JEE 1983
MCQ (Single Correct Answer)
+1
-0.25
If $$a+b+c=0$$, then the quadratic equation $$3a{x^2} + 2bx + c = 0$$ has
A
at least one root in $$\left[ {0,1} \right]$$
B
one root in $$\left[ {2,3} \right]$$ and the other in $$\left[ {-2,-1} \right]$$
C
imaginary roots
D
none of these
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12