1
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$f\left( x \right) = {x^3} + b{x^2} + cx + d$$ and $$0 < {b^2} < c,$$ then in $$\left( { - \infty ,\infty } \right)$$
A
$$f\left( x \right)$$ is a strictly increasing function
B
$$f\left( x \right)$$ has a local maxima
C
$$f\left( x \right)$$ is a strictly decreasing function
D
$$f\left( x \right)$$ is bounded
2
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If $$f\left( x \right) = {x^a}\log x$$ and $$f\left( 0 \right) = 0,$$ then the value of $$\alpha $$ for which Rolle's theorem can be applied in $$\left[ {0,1} \right]$$ is
A
$$-2$$
B
$$-1$$
C
$$0$$
D
$$1/2$$
3
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
Tangent is drawn to ellipse
$${{{x^2}} \over {27}} + {y^2} = 1\,\,\,at\,\left( {3\sqrt 3 \cos \theta ,\sin \theta } \right)\left( {where\,\,\theta \in \left( {0,\pi /2} \right)} \right)$$.

Then the value of $$\theta $$ such that sum of intercepts on axes made by this tangent is minimum, is

A
$$\pi /3$$
B
$$\pi /6$$
C
$$\pi /8$$
D
$$\pi /4$$
4
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
In $$\left[ {0,1} \right]$$ Languages Mean Value theorem is NOT applicable to
A
$$f\left( x \right) = \left\{ {\matrix{ {{1 \over 2} - x} & {x < {1 \over 2}} \cr {{{\left( {{1 \over 2} - x} \right)}^2}} & {x \ge {1 \over 2}} \cr } } \right.$$
B
$$f\left( x \right) = \left\{ {\matrix{ {\sin x,} & {x \ne 0} \cr {1,} & {x = 0} \cr } } \right.$$
C
$$f\left( x \right) = x\left| x \right|$$
D
$$f\left( x \right) = \left| x \right|$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12