1
IIT-JEE 2005 Screening
+2
-0.5
If $$P(x)$$ is a polynomial of degree less than or equal to $$2$$ and $$S$$ is the set of all such polynomials so that $$P(0)=0$$, $$P(1)=1$$ and $$P'\left( x \right) > 0\,\,\forall x \in \left[ {0,1} \right],$$ then
A
$$S = \phi$$
B
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,2} \right)$$
C
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,\infty } \right)$$
D
$$S = ax + \left( {1 - a} \right){x^2}\,\,\forall \,a \in \left( {0,1} \right)$$
2
IIT-JEE 2004 Screening
+2
-0.5
If $$f\left( x \right) = {x^3} + b{x^2} + cx + d$$ and $$0 < {b^2} < c,$$ then in $$\left( { - \infty ,\infty } \right)$$
A
$$f\left( x \right)$$ is a strictly increasing function
B
$$f\left( x \right)$$ has a local maxima
C
$$f\left( x \right)$$ is a strictly decreasing function
D
$$f\left( x \right)$$ is bounded
3
IIT-JEE 2004 Screening
+2
-0.5
If $$f\left( x \right) = {x^a}\log x$$ and $$f\left( 0 \right) = 0,$$ then the value of $$\alpha$$ for which Rolle's theorem can be applied in $$\left[ {0,1} \right]$$ is
A
$$-2$$
B
$$-1$$
C
$$0$$
D
$$1/2$$
4
IIT-JEE 2003 Screening
+2
-0.5
In $$\left[ {0,1} \right]$$ Languages Mean Value theorem is NOT applicable to
A
$$f\left( x \right) = \left\{ {\matrix{ {{1 \over 2} - x} & {x < {1 \over 2}} \cr {{{\left( {{1 \over 2} - x} \right)}^2}} & {x \ge {1 \over 2}} \cr } } \right.$$
B
$$f\left( x \right) = \left\{ {\matrix{ {\sin x,} & {x \ne 0} \cr {1,} & {x = 0} \cr } } \right.$$
C
$$f\left( x \right) = x\left| x \right|$$
D
$$f\left( x \right) = \left| x \right|$$
EXAM MAP
Medical
NEET