1
IIT-JEE 1995 Screening
+1
-0.25
The function $$f\left( x \right) = {{in\,\left( {\pi + x} \right)} \over {in\,\left( {e + x} \right)}}$$ is
A
increasing on $$\left( {0,\infty } \right)$$
B
decreasing on $$\left( {0,\infty } \right)$$
C
increasing on $$\left( {0,\pi /e} \right),$$ decreasing on $$\left( {\pi /e,\infty } \right)$$
D
decreasing on $$\left( {0,\pi /e} \right),$$ increasing on $$\left( {\pi /e,\infty } \right)$$
2
IIT-JEE 1995 Screening
+1
-0.25
On the interval $$\left[ {0,1} \right]$$ the function $${x^{25}}{\left( {1 - x} \right)^{75}}$$ takes its maximum value at the point
A
$$0$$
B
$${1 \over 4}$$
C
$${1 \over 2}$$
D
$${1 \over 3}$$
3
IIT-JEE 1995 Screening
+1
-0.25
The slope of the tangent to a curve $$y = f\left( x \right)$$ at $$\left[ {x,\,f\left( x \right)} \right]$$ is $$2x+1$$. If the curve passes through the point $$\left( {1,2} \right)$$, then the area bounded by the curve, the $$x$$-axis and the line $$x=1$$ is
A
$${5 \over 6}$$
B
$${6 \over 5}$$
C
$${1 \over 6}$$
D
$$6$$
4
IIT-JEE 1994
+1
-0.25
The function defined by $$f\left( x \right) = \left( {x + 2} \right){e^{ - x}}$$
A
decreasing for all $$x$$
B
decreasing in $$\left( { - \infty , - 1} \right)$$ and increasing in $$\left( { - 1,\infty } \right)$$
C
increasing for all $$x$$
D
decreasing in $$\left( { - 1,\infty } \right)$$ and increasing in $$\left( { - \infty , - 1} \right)$$
EXAM MAP
Medical
NEET