NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2016 Paper 1 Offline

MCQ (More than One Correct Answer)
The circle $${C_1}:{x^2} + {y^2} = 3,$$ with centre at $$O$$, intersects the parabola $${x^2} = 2y$$ at the point $$P$$ in the first quadrant, Let the tangent to the circle $${C_1}$$, at $$P$$ touches other two circles $${C_2}$$ and $${C_3}$$ at $${R_2}$$ and $${R_3}$$, respectively. Suppose $${C_2}$$ and $${C_3}$$ have equal radil $${2\sqrt 3 }$$ and centres $${Q_2}$$ and $${Q_3}$$, respectively. If $${Q_2}$$ and $${Q_3}$$ lie on the $$y$$-axis, then
A
$${Q_2}{Q_3} = 12$$
B
$${R_2}{R_3} = 4\sqrt 6 $$
C
area of the triangle $$O{R_2}{R_3}$$ is $$6\sqrt 2 $$
D
area of the triangle $$P{Q_2}{Q_3}$$ is $$4\sqrt 2 $$

Explanation

In case of option (A)

x2 + y2 = 3 and x2 = 2y

Solving we get $$P(\sqrt 2 ,1)$$

Equation of tangent at P on the circle

$$x\sqrt 2 + y = 3$$ $$\therefore$$ $$\tan \alpha = - \sqrt 2 $$

Again, $${{{Q_2}{R_2}} \over {{Q_2}M}} = \sin \left( {\alpha - {\pi \over 2}} \right)$$

or, $${{2\sqrt 3 } \over {{Q_2}M}} = - \cos \alpha = - {1 \over {\sqrt 3 }}$$ [$$\because$$ $$\tan \alpha = - \sqrt 2 $$]

or, $${Q_2}M = 6$$

Similarly, $${Q_3}M = 6$$

$$\therefore$$ $${Q_2}{Q_3} = 12$$

In case of option (B)

$${{M{R_2}} \over {{Q_2}{R_2}}} = \tan \left( {\alpha - {\pi \over 2}} \right)$$

or, $${{M{R_2}} \over {2\sqrt 3 }} = - \tan \alpha = \sqrt 2 $$

or, $$M{R_2} = 2\sqrt 6 $$

Similarly, $$M{R_3} = 2\sqrt 6 $$ $$\therefore$$ $${R_2}{R_3} = 4\sqrt 6 $$

In case of option (C)

OP is the perpendicular drawn from O to R2R3

$$\therefore$$ area of $$\Delta O{R_2}{R_3} = {1 \over 2} \times OP \times {R_2}{R_3} = {1 \over 2} \times \sqrt 3 \times 4\sqrt 6 =6\sqrt 2 $$

In case of option (D)

PT is perpendicular drawn from P to Q2Q3

$$\therefore$$ area of $$\Delta P{Q_2}{Q_3} = {1 \over 2} \times PT \times {Q_2}{Q_3} = {1 \over 2} \times \sqrt 2 \times 12 = 6\sqrt 2 $$

Therefore, (A), (B), (C) are correct options.

2

JEE Advanced 2015 Paper 2 Offline

MCQ (More than One Correct Answer)
Consider the hyperbola $$H:{x^2} - {y^2} = 1$$ and a circle $$S$$ with center $$N\left( {{x_2},0} \right)$$. Suppose that $$H$$ and $$S$$ touch each other at a point $$P\left( {{x_1},{y_1}} \right)$$ with $${{x_1} > 1}$$ and $${{y_1} > 0}$$. The common tangent to $$H$$ and $$S$$ at $$P$$ intersects the $$x$$-axis at point $$M$$. If $$(l, m)$$ is the centroid of the triangle $$PMN$$, then the correct expressions(s) is(are)
A
$${{dl} \over {d{x_1}}} = 1 - {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
B
$${{dm} \over {d{x_1}}} = {{{x_1}} \over {3\left( {\sqrt {x_1^2 - 1} } \right)}}$$ for $${x_1} > 1$$
C
$${{dl} \over {d{x_1}}} = 1 + {1 \over {3x_1^2}}$$ for $${x_1} > 1$$
D
$${{dm} \over {d{y_1}}} = {1 \over 3}$$ for $${y_1} > 0$$

Explanation

Equation of family of circles touching hyperbola at (x1, y1) is

(x $$-$$ x1)2 + (y $$-$$ y1)2 + $$\lambda$$(xx1 $$-$$ yy1 $$-$$ 1) =0

Now, its centre is (x2, 0).

$$\therefore$$ $$\left[ {{{ - (\lambda {x_1} - 2{x_1})} \over 2},{{ - ( - 2{y_1} - \lambda {y_1})} \over 2}} \right] = ({x_2},0)$$

$$ \Rightarrow 2{y_1} + \lambda {y_1} = 0 \Rightarrow \lambda = - 2$$

and $$2{x_1} - \lambda x = 2{x_2} \Rightarrow {x_2} = 2{x_1}$$

$$\therefore$$ $$P({x_1},\sqrt {x_1^2 - 1} )$$

and $$N({x_2},0) = (2{x_1},0)$$

As tangent intersect X-axis at $$M\left( {{1 \over x},0} \right)$$.

Centroid of $$\Delta PWN = (l,m)$$

$$ \Rightarrow \left( {{{3{x_1} + {1 \over {{x_1}}}} \over 3},{{{y_1} + 0 + 0} \over 3}} \right) = (l,m)$$

$$ \Rightarrow l = {{3{x_1} + {1 \over {{x_1}}}} \over 3}$$

On differentiating w.r.t. x1, we get

$${{dl} \over {d{x_1}}} = {{3 - {1 \over {x_1^2}}} \over 3}$$

$$ \Rightarrow {{dl} \over {d{x_1}}} = 1 - {1 \over {3x_2^1}}$$, for x1 > 1

and $$m = {{\sqrt {x_1^2 - 1} } \over 3}$$

On differentiating w.r.t. x1, we get

$${{dm} \over {d{x_1}}} = {{2{x_1}} \over {2 \times 3\sqrt {x_1^2 - 1} }} = {{{x_1}} \over {3\sqrt {x_1^2 - 1} }}$$, for x1 > 1

Also, $$m = {{{y_1}} \over 3}$$

On differentiating w.r.t. y1, we get

$${{dm} \over {d{y_1}}} = {1 \over 3}$$, for y1 > 0

3

JEE Advanced 2015 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $$P$$ and $$Q$$ be distinct points on the parabola $${y^2} = 2x$$ such that a circle with $$PQ$$ as diameter passes through the vertex $$O$$ of the parabola. If $$P$$ lies in the first quadrant and the area of the triangle $$\Delta OPQ$$ is $${3\sqrt 2 ,}$$ then which of the following is (are) the coordinates of $$P$$?
A
$$\left( {4,2\sqrt 2 } \right)$$
B
$$\left( {9,3\sqrt 2 } \right)$$
C
$$\left( {{1 \over 4},{1 \over {\sqrt 2 }}} \right)$$
D
$$\left( {1,\sqrt 2 } \right)$$

Explanation

Let $$P\left( {{{t_1^2} \over 2},{t_1}} \right)$$ and $$Q\left( {{{t_2^2} \over 2},{t_2}} \right)$$ be two distinct points on the parabola $${y^2} = 2x$$.

The circle with PQ as diameter passes through the vertex O(0, 0) of the parabola.

Clearly, PO $$\bot$$ OQ

So, slope of PO $$\times$$ slope of OQ = $$-$$1

or, $${{{t_1} - 0} \over {{{t_1^2} \over 2} - 0}} \times {{{t_2} - 0} \over {{{t_2^2} \over 2} - 0}} = - 1$$

or, $${2 \over {{t_1}}} \times {2 \over {{t_2}}} = - 1$$

or, $${t_1}{t_2} = - 4$$

By question, area of $$\Delta OPQ = 3\sqrt 2 $$

or, $${1 \over 2}\left| {\matrix{ 0 & 0 & 1 \cr {{{t_1^2} \over 2}} & {{t_1}} & 1 \cr {{{t_2^2} \over 2}} & {{t_2}} & 1 \cr } } \right| = 3\sqrt 2 $$

or, $${1 \over 2}\left| {{{t_1^2{t_2}} \over 2} - {{{t_1}t_2^2} \over 2}} \right| = 3\sqrt 2 $$

or, $$\left| {{t_1}{t_2}} \right|\left| {{t_1} - {t_2}} \right| = 12\sqrt 2 $$

or, $$\left| {{t_1} + {4 \over {{t_1}}}} \right| = 3\sqrt 2 $$ [$$\because$$ $${t_1}{t_2} = - 4$$]

or, $${t_1} + {4 \over {{t_1}}} = 3\sqrt 2 $$ [$$\because$$ P lies in first quadrant]

or, $$t_1^2 - 3\sqrt 2 {t_1} + 4 = 0$$

or, $${t_1} = {{3\sqrt 2 \pm \sqrt {18 - 4 \times 1 \times 4} } \over 2}$$

$$ = {{3\sqrt 2 \pm \sqrt 2 } \over 2}$$

$$ = 2\sqrt 2 ,\sqrt 2 $$

$$\therefore$$ coordinates of $$P = (4,2\sqrt 2 )$$ or $$(1,\sqrt 2 )$$.

Therefore, (A) and (D) are correct options.

4

JEE Advanced 2015 Paper 2 Offline

MCQ (More than One Correct Answer)
Let $${E_1}$$ and $${E_2}$$ be two ellipses whose centres are at the origin. The major axes of $${E_1}$$ and $${E_2}$$ lie along the $$x$$-axis and the $$y$$-axis, respectively. Let $$S$$ be the circle $${x^2} + {\left( {y - 1} \right)^2} = 2$$. The straight line $$x+y=3$$ touches the curves $$S$$, $${E_1}$$ and $${E_2}$$ at $$P, Q$$ and $$R$$ respectively. Suppose that $$PQ = PR = {{2\sqrt 2 } \over 3}$$. If $${e_1}$$ and $${e_2}$$ are the eccentricities of $${E_1}$$ and $${E_2}$$, respectively, then the correct expression(s) is (are)
A
$$\mathop e\nolimits_1^2 + \mathop e\nolimits_2^2 = {{43} \over {40}}$$
B
$${e_1}{e_2} = {{\sqrt 7 } \over {2\sqrt {10} }}$$
C
$$\left| {\mathop e\nolimits_1^2 + \mathop e\nolimits_2^2 } \right| = {5 \over 8}$$
D
$${e_1}{e_2} = {{\sqrt 3 } \over 4}$$

Explanation

Here, $${E_1}:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,\,(a > b)$$

$${E_2}:{{{x^2}} \over {{c^2}}} + {{{y^2}} \over {{d^2}}} = 1,\,(c < d)$$

and $$S:{x^2} + {(y - 1)^2} = 2$$

as tangent to E1, E2 and S is $$x + y = 3$$.

Let the point of contact of tangent be $$({x_1},{y_1})$$ to S.

$$\therefore$$ $$x\,.\,{x_1} + y\,.\,{y_1} - (y + {y_1}) + 1 = 2$$

or $$x{x_1} + y{y_1} - y = (1 + {y_1})$$, same as $$x + y = 3$$.

$$ \Rightarrow {{{x_1}} \over 1} = {{{y_1} - 1} \over 1} = {{1 + {y_1}} \over 3}$$

i.e. $${x_1} = 1$$ and $${y_1} = 2$$

$$\therefore$$ $$P = (1,2)$$

Since, $$PR = PQ = {{2\sqrt 2 } \over 3}$$. Thus, by parametric form,

$${{x - 1} \over { - 1/\sqrt 2 }} = {{y - 2} \over {1/\sqrt 2 }} = \pm {{2\sqrt 2 } \over 3}$$

$$ \Rightarrow \left( {x = {5 \over 3},y = {4 \over 3}} \right)$$

and $$\left( {x = {1 \over 3},y = {8 \over 3}} \right)$$

$$\therefore$$ $$Q = \left( {{5 \over 3},{4 \over 3}} \right)$$ and $$R = \left( {{1 \over 3},{8 \over 3}} \right)$$

Now, equation of tangent at Q on ellipse E1 is

$${{x\,.\,5} \over {{a^2}\,.\,3}} + {{y\,.\,4} \over {{b^2}\,.\,3}} = 1$$

On comparing with x + y = 3, we get

$${a^2} = 5$$ and $${b^2} = 4$$

$$\therefore$$ $$e_1^2 = 1 - {{{b^2}} \over {{a^2}}} = 1 - {4 \over 5} = {1 \over 5}$$ ..... (i)

Also, equation of tangent at R on ellipse E2 is

$${{x\,.\,1} \over {{a^2}\,.\,3}} + {{y\,.\,8} \over {{b^2}\,.\,3}} = 1$$

On comparing with x + y = 3, we get

$${a^2} = 1,\,{b^2} = 8$$

$$\therefore$$ $$e_2^2 = 1 - {{{a^2}} \over {{b^2}}} = 1 - {1 \over 8} = {7 \over 8}$$ ...... (ii)

Now, $$e_1^2\,.\,e_2^2 = {7 \over {40}} \Rightarrow {e_1}{e_2} = {{\sqrt 7 } \over {2\sqrt {10} }}$$

and $$e_1^2 + e_2^2 = {1 \over 5} + {7 \over 8} = {{43} \over {40}}$$

Also, $$\left| {e_1^2 - e_2^2} \right| = \left| {{1 \over 5} - {7 \over 8}} \right| = {{27} \over {40}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12