1
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$A$$ and $$B$$ be two distinct points on the parabola $${y^2} = 4x$$. If the axis of the parabola touches a circle of radius $$r$$ having $$AB$$ as its diameter, then the slope of the line joining $$A$$ and $$B$$ can be
A
$$ - {1 \over r}$$
B
$$ {1 \over r}$$
C
$$ {2 \over r}$$
D
$$ - {2 \over r}$$
2
IIT-JEE 2009 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
The tangent $$PT$$ and the normal $$PN$$ to the parabola $${y^2} = 4ax$$ at a point $$P$$ on it meet its axis at points $$T$$ and $$N$$, respectively. The locus of the centroid of the triangle $$PTN$$ is a parabola whose
A
vertex is $$\left( {{{2a} \over 3},0} \right)$$
B
directrix is $$x=0$$
C
latus rectum is $${{{2a} \over 3}}$$
D
focus is $$(a, 0)$$
3
IIT-JEE 2009 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
An ellipse intersects the hyperbola $$2{x^2} - 2{y^2} = 1$$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes then
A
equation of ellipse is $${x^2} + 2{y^2} = 2$$
B
the foci of ellipse are $$\left( { \pm 1,0} \right)$$
C
equation of ellipse is $${x^2} + 2{y^2} = 4$$
D
the foci of ellipse are $$\left( { \pm \sqrt 2 ,0} \right)$$
4
IIT-JEE 2009 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
In a triangle $$ABC$$ with fixed base $$BC$$, the vertex $$A$$ moves such that $$$\cos \,B + \cos \,C = 4{\sin ^2}{A \over 2}.$$$

If $$a, b$$ and $$c$$ denote the lengths of the sides of the triangle opposite to the angles $$A, B$$ and $$C$$, respectively, then

A
$$b+c=4a$$
B
$$b+c=2a$$
C
locus of point $$A$$ is an ellipse
D
locus of point $$A$$ is a pair of straight lines
JEE Advanced Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN