Let $$P\left( {{{t_1^2} \over 2},{t_1}} \right)$$ and $$Q\left( {{{t_2^2} \over 2},{t_2}} \right)$$ be two distinct points on the parabola $${y^2} = 2x$$.
The circle with PQ as diameter passes through the vertex O(0, 0) of the parabola.
Clearly, PO $$\bot$$ OQ
So, slope of PO $$\times$$ slope of OQ = $$-$$1
or, $${{{t_1} - 0} \over {{{t_1^2} \over 2} - 0}} \times {{{t_2} - 0} \over {{{t_2^2} \over 2} - 0}} = - 1$$
or, $${2 \over {{t_1}}} \times {2 \over {{t_2}}} = - 1$$
or, $${t_1}{t_2} = - 4$$
By question, area of $$\Delta OPQ = 3\sqrt 2 $$
or, $${1 \over 2}\left| {\matrix{
0 & 0 & 1 \cr
{{{t_1^2} \over 2}} & {{t_1}} & 1 \cr
{{{t_2^2} \over 2}} & {{t_2}} & 1 \cr
} } \right| = 3\sqrt 2 $$
or, $${1 \over 2}\left| {{{t_1^2{t_2}} \over 2} - {{{t_1}t_2^2} \over 2}} \right| = 3\sqrt 2 $$
or, $$\left| {{t_1}{t_2}} \right|\left| {{t_1} - {t_2}} \right| = 12\sqrt 2 $$
or, $$\left| {{t_1} + {4 \over {{t_1}}}} \right| = 3\sqrt 2 $$ [$$\because$$ $${t_1}{t_2} = - 4$$]
or, $${t_1} + {4 \over {{t_1}}} = 3\sqrt 2 $$ [$$\because$$ P lies in first quadrant]
or, $$t_1^2 - 3\sqrt 2 {t_1} + 4 = 0$$
or, $${t_1} = {{3\sqrt 2 \pm \sqrt {18 - 4 \times 1 \times 4} } \over 2}$$
$$ = {{3\sqrt 2 \pm \sqrt 2 } \over 2}$$
$$ = 2\sqrt 2 ,\sqrt 2 $$
$$\therefore$$ coordinates of $$P = (4,2\sqrt 2 )$$ or $$(1,\sqrt 2 )$$.
Therefore, (A) and (D) are correct options.
Here, $${E_1}:{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,\,(a > b)$$
$${E_2}:{{{x^2}} \over {{c^2}}} + {{{y^2}} \over {{d^2}}} = 1,\,(c < d)$$
and $$S:{x^2} + {(y - 1)^2} = 2$$
as tangent to E1, E2 and S is $$x + y = 3$$.
Let the point of contact of tangent be $$({x_1},{y_1})$$ to S.
$$\therefore$$ $$x\,.\,{x_1} + y\,.\,{y_1} - (y + {y_1}) + 1 = 2$$
or $$x{x_1} + y{y_1} - y = (1 + {y_1})$$, same as $$x + y = 3$$.
$$ \Rightarrow {{{x_1}} \over 1} = {{{y_1} - 1} \over 1} = {{1 + {y_1}} \over 3}$$
i.e. $${x_1} = 1$$ and $${y_1} = 2$$
$$\therefore$$ $$P = (1,2)$$
Since, $$PR = PQ = {{2\sqrt 2 } \over 3}$$. Thus, by parametric form,
$${{x - 1} \over { - 1/\sqrt 2 }} = {{y - 2} \over {1/\sqrt 2 }} = \pm {{2\sqrt 2 } \over 3}$$
$$ \Rightarrow \left( {x = {5 \over 3},y = {4 \over 3}} \right)$$
and $$\left( {x = {1 \over 3},y = {8 \over 3}} \right)$$
$$\therefore$$ $$Q = \left( {{5 \over 3},{4 \over 3}} \right)$$ and $$R = \left( {{1 \over 3},{8 \over 3}} \right)$$
Now, equation of tangent at Q on ellipse E1 is
$${{x\,.\,5} \over {{a^2}\,.\,3}} + {{y\,.\,4} \over {{b^2}\,.\,3}} = 1$$
On comparing with x + y = 3, we get
$${a^2} = 5$$ and $${b^2} = 4$$
$$\therefore$$ $$e_1^2 = 1 - {{{b^2}} \over {{a^2}}} = 1 - {4 \over 5} = {1 \over 5}$$ ..... (i)
Also, equation of tangent at R on ellipse E2 is
$${{x\,.\,1} \over {{a^2}\,.\,3}} + {{y\,.\,8} \over {{b^2}\,.\,3}} = 1$$
On comparing with x + y = 3, we get
$${a^2} = 1,\,{b^2} = 8$$
$$\therefore$$ $$e_2^2 = 1 - {{{a^2}} \over {{b^2}}} = 1 - {1 \over 8} = {7 \over 8}$$ ...... (ii)
Now, $$e_1^2\,.\,e_2^2 = {7 \over {40}} \Rightarrow {e_1}{e_2} = {{\sqrt 7 } \over {2\sqrt {10} }}$$
and $$e_1^2 + e_2^2 = {1 \over 5} + {7 \over 8} = {{43} \over {40}}$$
Also, $$\left| {e_1^2 - e_2^2} \right| = \left| {{1 \over 5} - {7 \over 8}} \right| = {{27} \over {40}}$$
Let L be a normal to the parabola y2 = 4x. If L passes through the point (9, 6), then L is given by
The equation of normal is
y = mx $$-$$ 2m $$-$$ m3
As (9, 6) lies on it, 6 = 9m $$-$$ 2m $$-$$ m33 $$-$$ 7m + 6 = 0
The roots are m = 1, 2, $$-$$3. So the normal are
y = x $$-$$ 3, y = 2x $$-$$ 12, y = $$-$$3x + 33.