Let $S$ denote the locus of the mid-points of those chords of the parabola $y^2=x$, such that the area of the region enclosed between the parabola and the chord is $\frac{4}{3}$. Let $\mathcal{R}$ denote the region lying in the first quadrant, enclosed by the parabola $y^2=x$, the curve $S$, and the lines $x=1$ and $x=4$.
Then which of the following statements is (are) TRUE?
Consider the parabola $$y^{2}=4 x$$. Let $$S$$ be the focus of the parabola. A pair of tangents drawn to the parabola from the point $$P=(-2,1)$$ meet the parabola at $$P_{1}$$ and $$P_{2}$$. Let $$Q_{1}$$ and $$Q_{2}$$ be points on the lines $$S P_{1}$$ and $$S P_{2}$$ respectively such that $$P Q_{1}$$ is perpendicular to $$S P_{1}$$ and $$P Q_{2}$$ is perpendicular to $$S P_{2}$$. Then, which of the following is/are TRUE?