1
JEE Advanced 2022 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Suppose that

Box-I contains 8 red, 3 blue and 5 green balls,

Box-II contains 24 red, 9 blue and 15 green balls,

Box-III contains 1 blue, 12 green and 3 yellow balls,

Box-IV contains 10 green, 16 orange and 6 white balls.

A ball is chosen randomly from Box-I; call this ball $b$. If $b$ is red then a ball is chosen randomly from Box-II, if $b$ is blue then a ball is chosen randomly from Box-III, and if $b$ is green then a ball is chosen randomly from Box-IV. The conditional probability of the event 'one of the chosen balls is white' given that the event 'at least one of the chosen balls is green' has happened, is equal to

A
$\frac{15}{256}$
B
$\frac{3}{16}$
C
$\frac{5}{52}$
D
$\frac{1}{8}$
2
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Two players, $$P_{1}$$ and $$P_{2}$$, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let $$x$$ and $$y$$ denote the readings on the die rolled by $$P_{1}$$ and $$P_{2}$$, respectively. If $$x>y$$, then $$P_{1}$$ scores 5 points and $$P_{2}$$ scores 0 point. If $$x=y$$, then each player scores 2 points. If $$x < y$$, then $$P_{1}$$ scores 0 point and $$P_{2}$$ scores 5 points. Let $$X_{i}$$ and $$Y_{i}$$ be the total scores of $$P_{1}$$ and $$P_{2}$$, respectively, after playing the $$i^{\text {th }}$$ round.

List-I List-II
(I) Probability of $$\left(X_{2} \geq Y_{2}\right)$$ is (P) $$\frac{3}{8}$$
(II) Probability of $$\left(X_{2}>Y_{2}\right)$$ is (Q) $$\frac{11}{16}$$
(III) Probability of $$\left(X_{3}=Y_{3}\right)$$ is (R) $$\frac{5}{16}$$
(IV) Probability of $$\left(X_{3}>Y_{3}\right)$$ is (S) $$\frac{355}{864}$$
(T) $$\frac{77}{432}$$

The correct option is:

A
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow(S)$$
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (T)
C
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{S})$$
D
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (Q); (IV) $$\rightarrow$$ (T)
3
JEE Advanced 2021 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider three sets E1 = {1, 2, 3}, F1 = {1, 3, 4} and G1 = {2, 3, 4, 5}. Two elements are chosen at random, without replacement, from the set E1, and let S1 denote the set of these chosen elements. Let E2 = E1 $$-$$ S1 and F2 = F1 $$\cup$$ S1. Now two elements are chosen at random, without replacement, from the set F2 and let S2 denote the set of these chosen elements.

Let G2 = G1 $$\cup$$ S2. Finally, two elements are chosen at random, without replacement, from the set G2 and let S3 denote the set of these chosen elements.

Let E3 = E2 $$\cup$$ S3. Given that E1 = E3, let p be the conditional probability of the event S1 = {1, 2}. Then the value of p is
A
$${1 \over 5}$$
B
$${3 \over 5}$$
C
$${1 \over 2}$$
D
$${2 \over 5}$$
4
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let C1 and C2 be two biased coins such that the probabilities of getting head in a single toss are $${{2 \over 3}}$$ and $${{1 \over 3}}$$, respectively. Suppose $$\alpha $$ is the number of heads that appear when C1 is tossed twice, independently, and suppose $$\beta $$ is the number of heads that appear when C2 is tossed twice, independently. Then the probability that the roots of the quadratic polynomial x2 $$-$$ ax + $$\beta $$ are real and equal, is
A
$${{40} \over {81}}$$
B
$${{20} \over {81}}$$
C
$${{1} \over {2}}$$
D
$${{1} \over {4}}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12