1
JEE Advanced 2016 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
A computer producing factory has only two plants $${T_1}$$ and $${T_2}.$$ Plant $${T_1}$$ produces $$20$$% and plant $${T_2}$$ produces $$80$$% of the total computers produced. $$7$$% of computers produced in the factory turn out to be defective. It is known that $$P$$ (computer turns out to be defective given that it is produced in plant $${T_1}$$)
$$ = 10P$$ (computer turns out to be defective given that it is produced in plant $${T_2}$$),
where $$P(E)$$ denotes the probability of an event $$E$$. A computer produced in the factory is randomly selected and it does not turn out to be defective. Then the probability that it is produced in plant $${T_2}$$ is
A
$${{36} \over {73}}$$
B
$${{47} \over {79}}$$
C
$${{78} \over {93}}$$
D
$${{75} \over {83}}$$
2
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Box $$1$$ contains three cards bearing numbers $$1,2,3;$$ box $$2$$ contains five cards bearing numbers $$1,2,3,4,5;$$ and box $$3$$ contains seven cards bearing numbers $$1,2,3,4,5,6,7.$$ A card is drawn from each of the boxes. Let $${x_i}$$ be number on the card drawn from the $${i^{th}}$$ box, $$i=1,2,3.$$

The probability that $${x_1} + {x_2} + {x_3}$$ is odd, is

A
$${{29} \over {105}}$$
B
$${{53} \over {105}}$$
C
$${{57} \over {105}}$$
D
$${{1} \over {2}}$$
3
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Box $$1$$ contains three cards bearing numbers $$1,2,3;$$ box $$2$$ contains five cards bearing numbers $$1,2,3,4,5;$$ and box $$3$$ contains seven cards bearing numbers $$1,2,3,4,5,6,7.$$ A card is drawn from each of the boxes. Let $${x_i}$$ be number on the card drawn from the $${i^{th}}$$ box, $$i=1,2,3.$$

The probability that $${x_1},$$, $${x_2},$$ $${x_3}$$ are in an arithmetic progression, is

A
$${{9} \over {105}}$$
B
$${{10} \over {105}}$$
C
$${{11} \over {105}}$$
D
$${{7} \over {105}}$$
4
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Three boys and two girls stand in a queue. The probability, that the number of boys ahead of every girl is at least one more than the number of girls ahead of her, is
A
$${1 \over 2}$$
B
$${1 \over 3}$$
C
$${2 \over 3}$$
D
$${3 \over 4}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12