1
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1

Three students $S_1, S_2,$ and $S_3$ are given a problem to solve. Consider the following events:

U: At least one of $S_1, S_2,$ and $S_3$ can solve the problem,

V: $S_1$ can solve the problem, given that neither $S_2$ nor $S_3$ can solve the problem,

W: $S_2$ can solve the problem and $S_3$ cannot solve the problem,

T: $S_3$ can solve the problem.

For any event $E$, let $P(E)$ denote the probability of $E$. If

$P(U) = \dfrac{1}{2}$ , $P(V) = \dfrac{1}{10}$ , and $P(W) = \dfrac{1}{12}$,

then $P(T)$ is equal to

A

$\dfrac{13}{36}$

B

$\dfrac{1}{3}$

C

$\dfrac{19}{60}$

D

$\dfrac{1}{4}$

2
JEE Advanced 2024 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

A student appears for a quiz consisting of only true-false type questions and answers all the questions. The student knows the answers of some questions and guesses the answers for the remaining questions. Whenever the student knows the answer of a question, he gives the correct answer. Assume that the probability of the student giving the correct answer for a question, given that he has guessed it, is $\frac{1}{2}$. Also assume that the probability of the answer for a question being guessed, given that the student's answer is correct, is $\frac{1}{6}$. Then the probability that the student knows the answer of a randomly chosen question is :

A
$\frac{1}{12}$
B
$\frac{1}{7}$
C
$\frac{5}{7}$
D
$\frac{5}{12}$
3
JEE Advanced 2023 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is :
A
$\frac{1}{3}$
B
$\frac{5}{21}$
C
$\frac{4}{21}$
D
$\frac{2}{7}$
4
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $X=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: \frac{x^2}{8}+\frac{y^2}{20}<1\right.$ and $\left.y^2<5 x\right\}$. Three distinct points $P, Q$ and $R$ are randomly chosen from $X$. Then the probability that $P, Q$ and $R$ form a triangle whose area is a positive integer, is :
A
$\frac{71}{220}$
B
$\frac{73}{220}$
C
$\frac{79}{220}$
D
$\frac{83}{220}$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12