1
IIT-JEE 1998
Subjective
+8
-0
Suppose $$f(x)$$ is a function satisfying the following conditions
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr } $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.
2
IIT-JEE 1997
Subjective
+5
-0
Let $$a+b=4$$, where $$a<2,$$ and let $$g(x)$$ be a differentiable function.

If $${{dg} \over {dx}} > 0$$ for all $$x$$, prove that $$\int_0^a {g\left( x \right)dx + \int_0^b {g\left( x \right)dx} } $$
increases as $$(b-a)$$ increases.

3
IIT-JEE 1996
Subjective
+3
-0
Let $$f\left( x \right) = \left\{ {\matrix{ {x{e^{ax}},\,\,\,\,\,\,\,x \le 0} \cr {x + a{x^2} - {x^3},\,x > 0} \cr } } \right.$$

Where a is a positive constant. Find the interval in which $$f'(x)$$ is increasing.

4
IIT-JEE 1996
Subjective
+5
-0
A curve $$y=f(x)$$ passes through the point $$P(1, 1)$$. The normal to the curve at $$P$$ is $$a(y-1)+(x-1)=0$$. If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, determine the equation of the curve. Also obtain the area bounded by the $$y$$-axis, the curve and the normal to the curve at $$P$$.
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12