If $$p(x)$$ be a polynomial of degree $$3$$ satisfying $$p(-1)=10, p(1)=-6$$ and $$p(x)$$ has maxima at $$x=-1$$ and $$p'(x)$$ has minima at $$x=1$$. Find the distance between the local maxima and local minima of the curve.
Answer
$$4\sqrt {65} $$
2
IIT-JEE 2005
Subjective
If $$\left| {f\left( {{x_1}} \right) - f\left( {{x_2}} \right)} \right| < {\left( {{x_1} - {x_2}} \right)^2},$$ for all $${x_1},{x_2} \in R$$. Find the equation of tangent to the cuve $$y = f\left( x \right)$$ at the point $$(1, 2)$$.
Answer
$$y=2$$
3
IIT-JEE 2004
Subjective
Prove that for $$x \in \left[ {0,{\pi \over 2}} \right],$$ $$\sin x + 2x \ge {{3x\left( {x + 1} \right)} \over \pi }$$. Explain
the identity if any used in the proof.
Answer
Solve it.
4
IIT-JEE 2004
Subjective
Using Rolle's theorem, prove that there is at least one root
in $$\left( {{{45}^{1/100}},46} \right)$$ of the polynomial
$$P\left( x \right) = 51{x^{101}} - 2323{\left( x \right)^{100}} - 45x + 1035$$.
Answer
Solve it.
Questions Asked from Application of Derivatives
On those following papers in Subjective
Number in Brackets after Paper Indicates No. of Questions