1
IIT-JEE 2004
Subjective
+4
-0
Prove that for $$x \in \left[ {0,{\pi \over 2}} \right],$$ $$\sin x + 2x \ge {{3x\left( {x + 1} \right)} \over \pi }$$. Explain
the identity if any used in the proof.
2
IIT-JEE 2004
Subjective
+2
-0
Using Rolle's theorem, prove that there is at least one root
in $$\left( {{{45}^{1/100}},46} \right)$$ of the polynomial
$$P\left( x \right) = 51{x^{101}} - 2323{\left( x \right)^{100}} - 45x + 1035$$.
3
IIT-JEE 2003
Subjective
+4
-0
If $$P(1)=0$$ and $${{dp\left( x \right)} \over {dx}} > P\left( x \right)$$ for all $$x \ge 1$$ then prove that
$$P(x)>0$$ for all $$x>1$$.
4
IIT-JEE 2003
Subjective
+4
-0
If the function $$f:\left[ {0,4} \right] \to R$$ is differentiable then show that
(i)$$\,\,\,\,\,$$ For $$a, b$$$$\,\,$$$$ \in \left( {0,4} \right),{\left( {f\left( 4 \right)} \right)^2} - {\left( {f\left( 0 \right)} \right)^2} = gf'\left( a \right)f\left( b \right)$$
(ii)$$\,\,\,\,\,$$ $$\int\limits_0^4 {f\left( t \right)dt = 2\left[ {\alpha f\left( {{\alpha ^2}} \right) + \beta \left( {{\beta ^2}} \right)} \right]\forall 0 < \alpha ,\beta < 2} $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12