Using the relation $$2\left( {1 - \cos x} \right) < {x^2},\,x \ne 0$$ or otherwise,
prove that $$\sin \left( {\tan x} \right) \ge x,\,\forall x \in \left[ {0,{\pi \over 4}} \right]$$
Answer
Solve it.
2
IIT-JEE 2001
Subjective
Let $$ - 1 \le p \le 1$$. Show that the equation $$4{x^3} - 3x - p = 0$$
has a unique root in the interval $$\left[ {1/2,\,1} \right]$$ and identify it.
Answer
Solve it.
3
IIT-JEE 2000
Subjective
Suppose $$p\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + .......... + {a_n}{x^n}.$$ If
$$\left| {p\left( x \right)} \right| \le \left| {{e^{x - 1}} - 1} \right|$$ for all $$x \ge 0$$, prove that
$$\left| {{a_1} + 2{a_2} + ........ + n{a_n}} \right| \le 1$$.
Answer
Solve it.
4
IIT-JEE 1998
Subjective
Suppose $$f(x)$$ is a function satisfying the following conditions
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$,
$$$f'\left( x \right) = \matrix{
{2ax} & {2ax - 1} & {2ax + b + 1} \cr
b & {b + 1} & { - 1} \cr
{2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr
} $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.