1
IIT-JEE 2003
Subjective
+4
-0
Using the relation $$2\left( {1 - \cos x} \right) < {x^2},\,x \ne 0$$ or otherwise,
prove that $$\sin \left( {\tan x} \right) \ge x,\,\forall x \in \left[ {0,{\pi \over 4}} \right]$$
2
IIT-JEE 2003
Subjective
+4
-0
If the function $$f:\left[ {0,4} \right] \to R$$ is differentiable then show that
(i)$$\,\,\,\,\,$$ For $$a, b$$$$\,\,$$$$ \in \left( {0,4} \right),{\left( {f\left( 4 \right)} \right)^2} - {\left( {f\left( 0 \right)} \right)^2} = gf'\left( a \right)f\left( b \right)$$
(ii)$$\,\,\,\,\,$$ $$\int\limits_0^4 {f\left( t \right)dt = 2\left[ {\alpha f\left( {{\alpha ^2}} \right) + \beta \left( {{\beta ^2}} \right)} \right]\forall 0 < \alpha ,\beta < 2} $$
3
IIT-JEE 2003
Subjective
+4
-0
If $$P(1)=0$$ and $${{dp\left( x \right)} \over {dx}} > P\left( x \right)$$ for all $$x \ge 1$$ then prove that
$$P(x)>0$$ for all $$x>1$$.
4
IIT-JEE 2001
Subjective
+5
-0
Let $$ - 1 \le p \le 1$$. Show that the equation $$4{x^3} - 3x - p = 0$$
has a unique root in the interval $$\left[ {1/2,\,1} \right]$$ and identify it.
JEE Advanced Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN