1
IIT-JEE 1994
Subjective
+5
-0
The circle $${x^2} + {y^2} = 1$$ cuts the $$x$$-axis at $$P$$ and $$Q$$. Another circle with centre at $$Q$$ and variable radius intersects the first circle at $$R$$ above the $$x$$-axis and the line segment $$PQ$$ at $$S$$. Find the maximum area of the triangle $$QSR$$.
2
IIT-JEE 1993
Subjective
+3
-0
Find the equation of the normal to the curve
$$y = {\left( {1 + x} \right)^y} + {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right)$$ at $$x=0$$
3
IIT-JEE 1993
Subjective
+5
-0
Let $$f\left( x \right) = \left\{ {\matrix{ { - {x^3} + {{\left( {{b^3} - {b^2} + b - 1} \right)} \over {\left( {{b^2} + 3b + 2} \right)}},} & {0 \le x < 1} \cr {2x - 3} & {1 \le x \le 3} \cr } } \right.$$

Find all possible real values of $$b$$ such that $$f(x)$$ has the smallest value at $$x=1$$.

4
IIT-JEE 1992
Subjective
+4
-0
A cubic $$f(x)$$ vanishes at $$x=2$$ and has relative minimum / maximum at $$x=-1$$ and $$x = {1 \over 3}$$ if $$\int\limits_{ - 1}^1 {f\,\,dx = {{14} \over 3}}$$, find the cubic $$f(x)$$.
EXAM MAP
Medical
NEET