1
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Suppose four distinct positive numbers $${a_1},\,{a_{2\,}},\,{a_3},\,{a_4}\,$$ are in G.P. Let $${b_1} = {a_1},{b_2} = {b_1} + {a_2},\,{b_3} = {b_2} + {a_{3\,\,}}\,\,\,and\,\,\,{b_4} = {b_3} + {a_4}$$.

STATEMENT-1: The numbers $${b_1},\,{b_{2\,}},\,{b_3},\,{b_4}\,$$ are neither in A.P. nor in G.P. and

STATEMENT-2 The numbers $${b_1},\,{b_{2\,}},\,{b_3},\,{b_4}\,$$ are in H.P.

A

STATEMENT-1 is True, STATEMENT-2 is True;
STATEMENT-2 is a correct explanation for
STATEMENT-1
B

STATEMENT-1 is True, STATEMENT-2 is True;
STATEMENT-2 is NOT a correct explanation for
STATEMENT-1
C
STATEMENT-1 is True, STATEMENT-2 is False
D
STATEMENT-1 is False, STATEMENT-2 is True
2
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

$${T_r}$$ is always

A
an odd number
B
an even number
C
a prime number
D
a composite number
3
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $${A_1}$$, $${G_1}$$, $${H_1}$$ denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For $$n \ge 2,\,Let\,{A_{n - 1}}\,\,and\,\,{H_{n - 1}}$$ have arithmetic, geometric and harminic means as $${A_n},{G_n}\,,{H_n}$$ repectively.

Which one of the following statements is correct ?

A
$${H_1} > {H_2}\, > {H_3} > ...$$
B
$${H_1} < {H_2}\, < {H_3} < ...$$
C
$${H_1} > {H_2}\, > {H_3} > ...$$ and $${H_1} < {H_2}\, < {H_3} < ...$$
D
$${H_1} < {H_2}\, < {H_3} < ...$$ and $${H_1} > {H_2}\, > {H_3} > ...$$
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

The sum $${V_1}$$+$${V_2}$$ +...+$${V_n}$$ is

A
$${1 \over {12}}n(n + 1)\,(3{n^2} - n + 1)$$
B
$${1 \over {12}}n(n + 1)\,(3{n^2} + n + 2)$$
C
$${1 \over 2}n(2{n^2} - n + 1)$$
D
$${1 \over 3}(2{n^3} - 2n + 3)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12