1
IIT-JEE 1999
+2
-0.5
The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
A
2
B
4
C
6
D
8
2
IIT-JEE 1999
+2
-0.5
Let $${a_1},{a_2},......{a_{10}}$$ be in $$A,\,P,$$ and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
A
2
B
3
C
5
D
6
3
IIT-JEE 1998
+2
-0.5
Let $$n$$ be an odd integer. If $$\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta ,}$$ for every value of $$\theta ,$$ then
A
$${b_0} = 1,\,b = 3$$
B
$${b_0} = 0,\,{b_1} = n$$
C
$${b_0} = - 1,\,{b_1} = n$$
D
$${b_0} = 0,\,{b_1} = {n^2} - 3n + 3$$
4
IIT-JEE 1998
+2
-0.5
Let $${T_r}$$ be the $${r^{th}}$$ term of an A.P., for $$r=1, 2, 3, ....$$ If for some positive integers $$m$$, $$n$$ we have
$${T_m} = {1 \over n}$$ and $${T_n} = {1 \over m},$$ then $${T_n} = {1 \over m},$$ equals
A
$${1 \over {mn}}$$
B
$${1 \over {mn}} + {1 \over n}$$
C
$$1$$
D
$$0$$
EXAM MAP
Medical
NEET