NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 1999

The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
A
2
B
4
C
6
D
8
2

### IIT-JEE 1998

If $$x > 1,y > 1,z > 1$$ are in G.P., then $${1 \over {1 + In\,x}},{1 \over {1 + In\,y}},{1 \over {1 + In\,z}}$$ are in
A
A.P.
B
H.P.
C
G.P.
D
None of these
3

### IIT-JEE 1998

Let $${T_r}$$ be the $${r^{th}}$$ term of an A.P., for $$r=1, 2, 3, ....$$ If for some positive integers $$m$$, $$n$$ we have
$${T_m} = {1 \over n}$$ and $${T_n} = {1 \over m},$$ then $${T_n} = {1 \over m},$$ equals
A
$${1 \over {mn}}$$
B
$${1 \over {mn}} + {1 \over n}$$
C
$$1$$
D
$$0$$
4

### IIT-JEE 1998

Let $$n$$ be an odd integer. If $$\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta ,}$$ for every value of $$\theta ,$$ then
A
$${b_0} = 1,\,b = 3$$
B
$${b_0} = 0,\,{b_1} = n$$
C
$${b_0} = - 1,\,{b_1} = n$$
D
$${b_0} = 0,\,{b_1} = {n^2} - 3n + 3$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12