1
IIT-JEE 2000 Screening
+2
-0.5
Consider an infinite geometric series with first term a and common ratio $$r$$. If its sum is 4 and the second term is 3/4, then
A
$$a = {4 \over 7},r = {3 \over 7}\,\,\,\,$$
B
$$a = 2,\,r = {3 \over 8}$$
C
$$a = {3 \over 2},r = {1 \over 2}$$
D
$$a = 3,\,r = {1 \over 4}$$
2
IIT-JEE 1999
+2
-0.5
The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
A
2
B
4
C
6
D
8
3
IIT-JEE 1999
+2
-0.5
Let $${a_1},{a_2},......{a_{10}}$$ be in $$A,\,P,$$ and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
A
2
B
3
C
5
D
6
4
IIT-JEE 1998
+2
-0.5
Let $$n$$ be an odd integer. If $$\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta ,}$$ for every value of $$\theta ,$$ then
A
$${b_0} = 1,\,b = 3$$
B
$${b_0} = 0,\,{b_1} = n$$
C
$${b_0} = - 1,\,{b_1} = n$$
D
$${b_0} = 0,\,{b_1} = {n^2} - 3n + 3$$
EXAM MAP
Medical
NEET