1
IIT-JEE 2012 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Let $${a_1},{a_2},{a_3},.....$$ be in harmonic progression with $${a_1} = 5$$ and $${a_{20}} = 25.$$ The least positive integer $$n$$ for which $${a_n} < 0$$ is
A
22
B
23
C
24
D
25
2
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

If the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is

A
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 6}$$
B
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 3}$$
C
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 3}$$
D
$${{n\left( {4{n^2} + 1} \right){c^2}} \over 6}$$
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Suppose four distinct positive numbers $${a_1},\,{a_{2\,}},\,{a_3},\,{a_4}\,$$ are in G.P. Let $${b_1} = {a_1},{b_2} = {b_1} + {a_2},\,{b_3} = {b_2} + {a_{3\,\,}}\,\,\,and\,\,\,{b_4} = {b_3} + {a_4}$$.

STATEMENT-1: The numbers $${b_1},\,{b_{2\,}},\,{b_3},\,{b_4}\,$$ are neither in A.P. nor in G.P. and

STATEMENT-2 The numbers $${b_1},\,{b_{2\,}},\,{b_3},\,{b_4}\,$$ are in H.P.

A

STATEMENT-1 is True, STATEMENT-2 is True;
STATEMENT-2 is a correct explanation for
STATEMENT-1
B

STATEMENT-1 is True, STATEMENT-2 is True;
STATEMENT-2 is NOT a correct explanation for
STATEMENT-1
C
STATEMENT-1 is True, STATEMENT-2 is False
D
STATEMENT-1 is False, STATEMENT-2 is True
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$\,{V_r}$$ denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $${T_r} = \,{V_{r + 1}} - \,{V_r} - 2\,\,\,and\,\,\,{Q_r} = \,{T_{r + 1}} - \,{T_r}\,for\,r = 1,2,...$$

$${T_r}$$ is always

A
an odd number
B
an even number
C
a prime number
D
a composite number
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12