1
IIT-JEE 2011 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \}$$ and $$Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \}$$ be two sets. Then

A
$$P \subset Q$$ and $$Q - P \ne \emptyset$$
B
$$Q \not\subset P$$
C
$$P \not\subset Q$$
D
$$P = Q$$
2
IIT-JEE 2009 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0

Match the statements/expressions in Column I with the values given in Column II:

Column I Column II
(A) Root(s) of the expression $$2{\sin ^2}\theta + {\sin ^2}2\theta = 2$$ (P) $${\pi \over 6}$$
(B) Points of discontinuity of the function $$f(x) = \left[ {{{6x} \over \pi }} \right]\cos \left[ {{{3x} \over \pi }} \right]$$, where $$[y]$$ denotes the largest integer less than or equal to y (Q) $${\pi \over 4}$$
(C) Volume of the parallelopiped with its edges represented by the vectors $$\widehat i + \widehat j + \widehat i + 2\widehat j$$ and $$\widehat i + \widehat j + \pi \widehat k$$ (R) $${\pi \over 3}$$
(D) Angle between vectors $$\overrightarrow a$$ and $$\overrightarrow b$$ where $$\overrightarrow a$$, $$\overrightarrow b$$ and $$\overrightarrow c$$ are unit vectors satisfying $$\overrightarrow a + \overrightarrow b + \sqrt 3 \overrightarrow c = \overrightarrow 0$$ (S) $${\pi \over 2}$$
(T) $$\pi$$

A
(A)$$\to$$(Q), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(Q); (D)$$\to$$(T)
B
(A)$$\to$$(R), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(P)
C
(A)$$\to$$(Q), (S); (B)$$\to$$(P), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(R)
D
(A)$$\to$$(P), (S); (B)$$\to$$(Q), (R), (S), (T); (C)$$\to$$(T); (D)$$\to$$(R)
3
IIT-JEE 2008 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Match the Statements/Expressions in Column I with the Statements/Expressions in Column II.

Column I Column II
(A) The minimum value of $${{{x^2} + 2x + 4} \over {x + 2}}$$ is (P) 0
(B) Let A and B be 3 $$\times$$ 3 matrices of real numbers, where A is symmetric, B is skew-symmetric and (A + B) (A $$-$$ B) = (A $$-$$ B) (A + B). If (AB)$$^t$$ = ($$-1$$)$$^k$$ AB, where (AB)$$^t$$ is the transpose of the matrix AB, then the possible values of k are (Q) 1
(C) Let $$a=\log_3\log_3 2$$. An integer k satisfying $$1 < {2^{( - k + 3 - a)}} < 2$$, must be less than (R) 2
(D) If $$\sin \theta = \cos \varphi$$, then the possible values of $${1 \over \pi }\left( {\theta + \varphi - {\pi \over 2}} \right)$$ are (S) 3

A
A - iii; B - ii, iv; C - iii, iv; D - i, iii
B
A - iii; B - ii; C - iii, iv; D - i, iii
C
A - ii; B - ii, iv; C - iii, iv; D - i
D
A - ii; B - ii, iv; C - iii, iv; D - i, iii
4
IIT-JEE 2007
MCQ (Single Correct Answer)
+3
-0.75
The number of solutions of the pair of equations $$\,2{\sin ^2}\theta - \cos 2\theta = 0$$$$$2co{s^2}\theta - 3\sin \theta = 0$$$

in the interval $$\left[ {0,2\pi } \right]$$

A
zero
B
one
C
two
D
four
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12