1
IIT-JEE 1992
MCQ (Single Correct Answer)
+2
-0.5
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is

Column $${\rm I}$$

(A) positive

(B) negative

Column $${\rm I}$$$${\rm I}$$

(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$

(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$

(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$

(s) $$\left( {0,\,{\pi \over 2}} \right)$$

Options:-

A
$$\left( A \right) - r,\,\left( B \right) - q$$
B
$$\left( A \right) - r,\,\left( B \right) - p$$
C
$$\left( A \right) - s,\,\left( B \right) - r$$
D
$$\left( A \right) - p,\,\left( B \right) - q$$
2
IIT-JEE 1990
MCQ (Single Correct Answer)
+2
-0.5
The equation $$\left( {\cos p - 1} \right){x^2} + \left( {\cos p} \right)x + \sin p = 0\,$$ In the variable x, has real roots. Then p can take any value in the interval
A
$$\left( {0,2\pi } \right)\,$$
B
$$\left( { - \pi ,0} \right)\,\,\,$$
C
$$\left[ { - {\pi \over 2},{\pi \over 2}} \right]\,$$
D
$$\left( {0,\pi } \right)$$
3
IIT-JEE 1989
MCQ (Single Correct Answer)
+2
-0.5
The general solutions of $$\,\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x$$ is
A
$$n\pi + {\pi \over 8}$$
B
$${{n\pi } \over 2} + {\pi \over 8}$$
C
$${\left( { - 1} \right)^n}{{n\pi } \over 2} + {\pi \over 8}\,\,$$
D
$$2n\pi + {\cos ^{ - 1}}{3 \over 2}$$
4
IIT-JEE 1988
MCQ (Single Correct Answer)
+2
-0.5
The value of the expression $$\sqrt 3 \,\cos \,ec\,{20^0} - \sec \,{20^0}$$ is equal to
A
2
B
$$2\sin {20^0}/\sin {40^0}$$
C
4
D
$$4\sin {20^0}/\sin {40^0}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12