1
IIT-JEE 1994
+2
-0.5
If $$\omega \,$$ is an imaginary cube root of unity then the value of $$\sin \left\{ {\left( {{\omega ^{10}} + {\omega ^{23}}} \right)\pi - {\pi \over 4}} \right\}$$ is
A
$$- {{\sqrt 3 } \over 2}\,$$
B
$$- {1 \over {\sqrt 2 }}$$
C
$${1 \over {\sqrt 2 }}$$
D
$${{\sqrt 3 } \over 2}$$
2
IIT-JEE 1994
+2
-0.5
Let $$2{\sin ^2}x + 3\sin x - 2 > 0$$ and $${x^2} - x - 2 < 0$$ ($$x$$ is measured in radians). Then $$x$$ lies in the interval
A
$$\left( {{\pi \over 6},\,{{5\pi } \over 6}} \right)\,\,$$
B
$$\left( { - 1,\,{{5\pi } \over 6}} \right)$$
C
$$\left( { - 1,\,2} \right)\,\,\,$$
D
$$\left( {{\pi \over 6},\,2} \right)$$
3
IIT-JEE 1993
+1
-0.25
Number of solutions of the equation $$\tan x + \sec x = 2\cos x\,$$ lying in the interval $$\left[ {0,2\pi } \right]$$ is:
A
0
B
1
C
2
D
3
4
IIT-JEE 1992
+2
-0.5
In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

$${{\sin \,3\alpha } \over {\cos 2\alpha }}$$ is

Column $${\rm I}$$

(A) positive

(B) negative

Column $${\rm I}$$$${\rm I}$$

(p) $$\left( {{{13\pi } \over {48}},{{14\pi } \over {48}}} \right)$$

(q) $$\left( {{{14\pi } \over {48}},\,{{18\pi } \over {48}}} \right)$$

(r) $$\left( {{{18\pi } \over {48}},\,{{23\pi } \over {48}}} \right)$$

(s) $$\left( {0,\,{\pi \over 2}} \right)$$

Options:-

A
$$\left( A \right) - r,\,\left( B \right) - q$$
B
$$\left( A \right) - r,\,\left( B \right) - p$$
C
$$\left( A \right) - s,\,\left( B \right) - r$$
D
$$\left( A \right) - p,\,\left( B \right) - q$$
EXAM MAP
Medical
NEET