1
IIT-JEE 2001 Screening
+2
-0.5
The maximum value of $$\left( {\cos {\alpha _1}} \right).\left( {\cos {\alpha _2}} \right).....\left( {\cos {\alpha _n}} \right),$$ under the restrictions
$$0 \le {\alpha _1},{\alpha _2},....,{\alpha _n} \le {\pi \over 2}$$ vand $$\left( {\cot {\alpha _1}} \right).\left( {\cot {\alpha _2}} \right)....\left( {\cot {\alpha _n}} \right) = 1$$ is
A
$$1/{2^{n/2}}$$
B
$$1/{2^n}$$
C
$$1/2n\,$$
D
1
2
IIT-JEE 2001 Screening
+2
-0.5
If $$\alpha + \beta = \pi /2$$ and $$\beta + \gamma = \alpha ,$$ then $$\tan \,\alpha \,$$ equals
A
$$2\left( {\tan \beta + \tan \gamma } \right)$$
B
$$\,\tan \beta + \tan \gamma$$
C
$$\tan \beta + 2\tan \gamma$$
D
$$2\tan \beta + \tan \gamma$$
3
IIT-JEE 2000 Screening
+2
-0.5
Let $$f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right)$$. Then $$f\left( \theta \right)$$ is
A
$$\ge 0\,\,$$ only when $$\theta \ge 0$$
B
$$\le 0$$ for all real $$\theta$$
C
$$\ge 0$$ for all real $$\theta$$
D
$$\le 0$$ only when $$\theta \le 0$$
4
IIT-JEE 1999
+2
-0.5
In a triangle $$PQR,\angle R = \pi /2$$. If $$\,\,\tan \left( {P/2} \right)$$ and $$\tan \left( {Q/2} \right)$$ are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$ then.
A
$$a + b = c$$
B
$$a + c = b$$
C
$$b + c = a$$
D
$$b = c$$
EXAM MAP
Medical
NEET