1
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Let f(x) = x2 and g(x) = sin x for all x $$\in$$ R. Then the set of all x satisfying $$(f \circ g \circ g \circ f)(x) = (g \circ g \circ f)(x)$$, where $$(f \circ g)(x) = f(g(x))$$, is

A
$$ \pm \sqrt {n\pi } ,\,n \in \{ 0,1,2,....\} $$
B
$$ \pm \sqrt {n\pi } ,\,n \in \{ 1,2,....\} $$
C
$${\pi \over 2} + 2n\pi ,\,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
D
$$2n\pi ,n \in \{ ....., - 2, - 1,0,1,2,....\} $$
2
IIT-JEE 2011 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1

Match the statements given in Column I with the intervals/union of intervals given in Column II :

IIT-JEE 2011 Paper 2 Offline Mathematics - Functions Question 6 English

A
(A) $$\to$$ (S), (B) $$\to$$ (T), (C) $$\to$$ (P), (D) $$\to$$ (Q)
B
(A) $$\to$$ (S), (B) $$\to$$ (T), (C) $$\to$$ (R), (D) $$\to$$ (P)
C
(A) $$\to$$ (S), (B) $$\to$$ (T), (C) $$\to$$ (R), (D) $$\to$$ (R)
D
(A) $$\to$$ (P), (B) $$\to$$ (Q), (C) $$\to$$ (R), (D) $$\to$$ (R)
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to :
A
25
B
34
C
42
D
41
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The real numbers lies in the interval

A
$$\left( { - {1 \over 4},0} \right)$$
B
$$\left( { - 11, - {3 \over 4}} \right)$$
C
$$\left( { - {3 \over 4}, - {1 \over 2}} \right)$$
D
$$\left( {0,{1 \over 4}} \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12