1
JEE Advanced 2018 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $${E_1} = \left\{ {x \in R:x \ne 1\,and\,{x \over {x - 1}} > 0} \right\}$$ and


$${E_2} = \left\{ \matrix{ x \in {E_1}:{\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right) \hfill \cr is\,a\,real\,number \hfill \cr} \right\}$$

(Here, the inverse trigonometric function $${\sin ^{ - 1}}$$ x assumes values in $$\left[ { - {\pi \over 2},{\pi \over 2}} \right]$$.).

Let f : E1 $$ \to $$ R be the function defined by f(x) = $${{{\log }_e}\left( {{x \over {x - 1}}} \right)}$$ and g : E2 $$ \to $$ R be the function defined by g(x) = $${\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right)$$.
LIST-I LIST-II
P. The range of $f$ is 1. $\left( -\infty, \frac{1}{1-e} \right] \cup \left[ \frac{e}{e-1}, \infty \right)$
Q. The range of $g$ contains 2. $(0, 1)$
R. The domain of $f$ contains 3. $\left[ -\frac{1}{2}, \frac{1}{2} \right]$
S. The domain of $g$ is 4. $(-\infty, 0) \cup (0, \infty)$
5. $\left( -\infty, \frac{e}{e-1} \right)$
6. $(-\infty, 0) \cup \left( \frac{1}{2}, \frac{e}{e-1} \right]$
The correct option is :
A
P $$ \to $$ 4; Q $$ \to $$ 2; R $$ \to $$ 1 ; S $$ \to $$ 1
B
P $$ \to $$ 3; Q $$ \to $$ 3; R $$ \to $$ 6 ; S $$ \to $$ 5
C
P $$ \to $$ 4; Q $$ \to $$ 2; R $$ \to $$ 1 ; S $$ \to $$ 6
D
P $$ \to $$ 4; Q $$ \to $$ 3; R $$ \to $$ 6 ; S $$ \to $$ 5
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let S = {1, 2, 3, .........., 9}. For k = 1, 2, .........., 5, let Nk be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N1 + N2 + N3 + N4 + N5 =
A
210
B
252
C
126
D
125
3
JEE Advanced 2014 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let f1 : R $$ \to $$ R, f2 : [0, $$\infty $$) $$ \to $$ R, f3 : R $$ \to $$ R, and f4 : R $$ \to $$ [0, $$\infty $$) be defined by

$${f_1}\left( x \right) = \left\{ {\matrix{ {\left| x \right|} & {if\,x < 0,} \cr {{e^x}} & {if\,x \ge 0;} \cr } } \right.$$

f2(x) = x2 ;

$${f_3}\left( x \right) = \left\{ {\matrix{ {\sin x} & {if\,x < 0,} \cr x & {if\,x \ge 0;} \cr } } \right.$$

and

$${f_4}\left( x \right) = \left\{ {\matrix{ {{f_2}\left( {{f_1}\left( x \right)} \right)} & {if\,x < 0,} \cr {{f_2}\left( {{f_1}\left( x \right)} \right) - 1} & {if\,x \ge 0;} \cr } } \right.$$

JEE Advanced 2014 Paper 2 Offline Mathematics - Functions Question 12 English
A
P - 3, Q - 1, R - 4, S - 2
B
P - 1, Q - 3, R - 4, S - 2
C
P - 3, Q - 1, R - 2, S - 4
D
P - 1, Q - 3, R - 2, S - 4
4
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

The function $$f:[0,3] \to [1,29]$$, defined by $$f(x) = 2{x^3} - 15{x^2} + 36x + 1$$, is

A
one-one and onto.
B
onto but not one-one.
C
one-one but not onto.
D
neither one-one nor onto.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12