NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2020 Paper 1 Offline

MCQ (Single Correct Answer)
If the function f : R $$ \to $$ R is defined by f(x) = |x| (x $$-$$ sin x), then which of the following statements is TRUE?
A
f is one-one, but NOT onto
B
f is onto, but NOT one-one
C
f is BOTH one-one and onto
D
f is NEITHER one-one NOR onto

Explanation

The given function f : R $$ \to $$ R is

$$f(x) = |x|(x - \sin x)$$ .....(i)

$$ \because $$ The function 'f' is a odd and continuous function and as $$\mathop {\lim }\limits_{x \to \infty } f(x) = \infty $$ and $$\mathop {\lim }\limits_{x \to \infty } f(x) = - \infty $$, so range is R, therefore, 'f' is a onto function.

$$ \because $$ $$f(x) = \left[ \matrix{ x(x - \sin x),\,x \ge \,0 \hfill \cr - x(x - \sin x),\,x\, < \,0 \hfill \cr} \right.$$

$$ \therefore $$ $$f'(x) = \left[ \matrix{ 2x - \sin x - x\cos x,\,x > \,0 \hfill \cr - 2x + \sin x + x\cos x,\,x\, < \,0 \hfill \cr} \right.$$

$$\left[ \matrix{ (x - \sin x) + x(1 - \cos x),\,x > \,0 \hfill \cr ( - x + \sin x) - x(1 - \cos x),\,x\, < \,0 \hfill \cr} \right.$$

$$ \because $$ for x > 0, x $$-$$ sin x > 0 and x(1 $$-$$ cos x) > 0

$$ \therefore $$ $$f'(x) > 0\forall x \in (0,\infty )$$

$$ \Rightarrow $$ f is strictly increasing function. $$\forall x \in (0,\infty )$$.

Similarly, for x < 0, $$-$$x + sin x > 0 and ($$-$$ x) (1 $$-$$ cos x) > 0, therefore, $$f'(x) > 0\forall x \in ( - \infty ,0)$$

$$ \Rightarrow $$ f is strictly increasing function, $$\forall x \in $$(0, $$\infty $$)

Therefore 'f' is a strictly increasing function for x$$ \in $$R and it implies that f is one-one function.
2

JEE Advanced 2018 Paper 2 Offline

MCQ (Single Correct Answer)
Let $${E_1} = \left\{ {x \in R:x \ne 1\,and\,{x \over {x - 1}} > 0} \right\}$$ and


$${E_2} = \left\{ \matrix{ x \in {E_1}:{\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right) \hfill \cr is\,a\,real\,number \hfill \cr} \right\}$$

(Here, the inverse trigonometric function $${\sin ^{ - 1}}$$ x assumes values in $$\left[ { - {\pi \over 2},{\pi \over 2}} \right]$$.).

Let f : E1 $$ \to $$ R be the function defined by f(x) = $${{{\log }_e}\left( {{x \over {x - 1}}} \right)}$$ and g : E2 $$ \to $$ R be the function defined by g(x) = $${\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right)$$.


The correct option is :
A
P $$ \to $$ 4; Q $$ \to $$ 2; R $$ \to $$ 1 ; S $$ \to $$ 1
B
P $$ \to $$ 3; Q $$ \to $$ 3; R $$ \to $$ 6 ; S $$ \to $$ 5
C
P $$ \to $$ 4; Q $$ \to $$ 2; R $$ \to $$ 1 ; S $$ \to $$ 6
D
P $$ \to $$ 4; Q $$ \to $$ 3; R $$ \to $$ 6 ; S $$ \to $$ 5

Explanation

We have,

$${E_1} = \left\{ {x \in R:x \ne 1\,and\,{x \over {x - 1}} > 0} \right\}$$

$$ \therefore $$ $${E_1} = {x \over {x - 1}} > 0$$



$${E_1} = x \in ( - \infty ,0) \cup (1,\infty )$$

and $${E_2} = \left\{ \matrix{ x \in {E_1}:{\sin ^{ - 1}}\left( {{{\log }_e}\left( {{x \over {x - 1}}} \right)} \right) \hfill \cr is\,a\,real\,number \hfill \cr} \right\}$$

$${E_2} = - 1 \le {\log _e}{x \over {x - 1}} \le 1$$

$$ \Rightarrow {e^{ - 1}} \le {x \over {x - 1}} \le e$$

Now, $${x \over {x - 1}} \ge {e^{ - 1}} \Rightarrow {x \over {x - 1}} - {1 \over e} \ge 0$$

$$ \Rightarrow {{ex - x + 1} \over {e(x - 1)}} \ge 0 \Rightarrow {{x(e - 1) + 1} \over {(x - 1)e}} \ge 0$$



$$ \Rightarrow x \in \left( { - \infty ,\,{1 \over {1 - e}}} \right) \cup (1,\infty )$$

Also, $${x \over {x - 1}} \le e$$

$$ \Rightarrow {{(e - 1)x - e} \over {x - 1}} \ge 0$$



$$ \Rightarrow x \in ( - \infty ,\,1) \cup \left[ {{e \over {e - 1}},\infty } \right)$$

So, $${E_2} = \left( { - \infty ,\,{1 \over {1 - e}}} \right] \cup \left[ {{e \over {e - 1}},\,\infty } \right)$$

$$ \therefore $$ The domain of f and g are

$$\left( { - \infty ,\,{1 \over {1 - e}}} \right] \cup \left[ {{e \over {e - 1}},\,\infty } \right)$$

and Range of $${x \over {x - 1}}$$ is R+ $$-$$ {1}

$$ \Rightarrow $$ Range of f is R $$-$$ {0} or ($$-$$$$\infty $$, 0) $$ \cup $$ (0, $$\infty $$)

Range of g is $$\left[ { - {\pi \over 2},{\pi \over 2}} \right] - \{ 0\} $$ or $$\left[ { - {\pi \over 2},0} \right) \cup \left( {0,{\pi \over 2}} \right]$$

Now, P $$ \to $$ 4, Q $$ \to $$ 2, R $$ \to $$ 1, S $$ \to $$ 1

Hence, option (a) is correct answer.
3

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)
Let S = {1, 2, 3, .........., 9}. For k = 1, 2, .........., 5, let Nk be the number of subsets of S, each containing five elements out of which exactly k are odd. Then N1 + N2 + N3 + N4 + N5 =
A
210
B
252
C
126
D
125

Explanation

$${N_i} = {}^5{C_k} \times {}^4{C_{5 - k}}$$

$$\eqalign{ & {N_1} = 5 \times 1 \cr & {N_2} = 10 \times 4 \cr & {N_3} = 10 \times 6 \cr & {N_4} = 5 \times 4 \cr & {N_5} = 1 \cr & {N_1} + {N_2} + {N_3} + {N_4} + {N_5} = 126 \cr} $$
4

JEE Advanced 2014 Paper 2 Offline

MCQ (Single Correct Answer)
Let f1 : R $$ \to $$ R, f2 : [0, $$\infty $$) $$ \to $$ R, f3 : R $$ \to $$ R, and f4 : R $$ \to $$ [0, $$\infty $$) be defined by

$${f_1}\left( x \right) = \left\{ {\matrix{ {\left| x \right|} & {if\,x < 0,} \cr {{e^x}} & {if\,x \ge 0;} \cr } } \right.$$

f2(x) = x2 ;

$${f_3}\left( x \right) = \left\{ {\matrix{ {\sin x} & {if\,x < 0,} \cr x & {if\,x \ge 0;} \cr } } \right.$$

and

$${f_4}\left( x \right) = \left\{ {\matrix{ {{f_2}\left( {{f_1}\left( x \right)} \right)} & {if\,x < 0,} \cr {{f_2}\left( {{f_1}\left( x \right)} \right) - 1} & {if\,x \ge 0;} \cr } } \right.$$

A
P - 3, Q - 1, R - 4, S - 2
B
P - 1, Q - 3, R - 4, S - 2
C
P - 3, Q - 1, R - 2, S - 4
D
P - 1, Q - 3, R - 2, S - 4

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12