1
IIT-JEE 2010 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $f, g$ and $h$ be real valued functions defined on the interval $[0,1]$ by

$f(x)=e^{x^2}+e^{-x^2}$,

$g(x)=x e^{x^2}+e^{-x^2}$

and $h(x)=x^2 e^{x^2}+e^{-x^2}$.

If $a, b$ and $c$ denote, respectively, the absolute maximum of $f, g$ and $h$ on $[0,1]$, then :

A
$a=b$ and $c \neq b$
B
$a=c$ and $a \neq b$
C
$a \neq b$ and $c \neq b$
D
$a=b=c$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Let $S=\{1,2,3,4\}$. The total number of unordered pairs of disjoint subsets of $S$ is equal to :
A
25
B
34
C
42
D
41
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The real numbers lies in the interval

A
$$\left( { - {1 \over 4},0} \right)$$
B
$$\left( { - 11, - {3 \over 4}} \right)$$
C
$$\left( { - {3 \over 4}, - {1 \over 2}} \right)$$
D
$$\left( {0,{1 \over 4}} \right)$$
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$

The function$$f'(x)$$ is

A
increasing in $$\left( { - t, - {1 \over 4}} \right)$$ and decreasing in $$\left( { - {1 \over 4},t} \right)$$
B
decreasing in $$\left( { - t, - {1 \over 4}} \right)$$ and increasing in $$\left( { - {1 \over 4},t} \right)$$
C
increasing in $$(-t, t)$$
D
decreasing in $$(-t, t)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12