NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
A
sin(P + Q)
B
sin(P + R)
C
sin(Q + R)
D
sin2R

Explanation

Now, $$\overrightarrow {OX} = {{\overrightarrow {QR} } \over {QR}}$$

and $$\overrightarrow {OY} = {{\overrightarrow {RP} } \over {RP}}$$

Therefore, $$(\overrightarrow {OX} \times \overrightarrow {OY} ) = {{\overrightarrow {QR} } \over {QR}} \times {{\overrightarrow {RP} } \over {RP}} = {{\overrightarrow {QR} \times \overrightarrow {RP} } \over {PQ}}$$

$$ = {{PQ\sin R} \over {PQ}} = \sin R = \sin (\pi - (P + Q) = \sin (P + Q))$$

2

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
A
$$ - {3 \over 2}$$
B
$${3 \over 2}$$
C
$${5 \over 3}$$
D
$$ - {5 \over 3}$$

Explanation

cos(P + Q) + cos(Q + R) + cos(R + P)

= $$-$$ (cosR + cosP + cosQ)

Max. of cosP + cosQ + cosR = $${3 \over 2}$$

Min. of cos(P + Q) + cos(Q + R) + cos(R + P) is = $$ - {3 \over 2}$$
3

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
A
14x + 2y $$-$$ 15z = 1
B
$$-$$14x + 2y + 15z = 3
C
14x $$-$$ 2y + 15z = 27
D
14x + 2y + 15z = 31

Explanation

Let the equation of plane be ax + by + cz = 1. Then

a + b + c = 1

2a + b $$-$$ 2c = 0

3a $$-$$ 6b $$-$$ 2c = 0

$$ \Rightarrow $$ a = 7b

c = $${{15b} \over 2}$$

b = $${{2} \over 31}$$, a = $${{14} \over 31}$$, c = $${{15} \over 31}$$

$$ \therefore $$ 14x + 2y + 15z = 31
4

JEE Advanced 2017 Paper 2 Offline

MCQ (Single Correct Answer)
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
A
centroid
B
orthocentre
C
incentre
D
circumcentre

Explanation

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$

$$ \Rightarrow $$ $$\overrightarrow{OP}$$($$\overrightarrow{OQ}$$ $$-$$ $$\overrightarrow{OR}$$) + $$\overrightarrow{OS}$$($$\overrightarrow{OR}$$ $$-$$ $$\overrightarrow{OQ}$$) = 0

$$ \Rightarrow $$ ($$\overrightarrow{OP}$$ $$-$$ $$\overrightarrow{OS}$$)($$\overrightarrow{OQ}$$ $$-$$ $$\overrightarrow{OR}$$) = 0

$$ \Rightarrow $$ $$\overrightarrow{SP}$$ . $$\overrightarrow{RQ}$$ = 0

Similarly $$\overrightarrow{SR}$$ . $$\overrightarrow{PQ}$$ = 0 and $$\overrightarrow{SQ}$$ . $$\overrightarrow{PR}$$ = 0

$$ \therefore \overrightarrow{S}$$ is orthocentre.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12