1
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let $$M = \left[ {\matrix{ 0 & 1 & a \cr 1 & 2 & 3 \cr 3 & b & 1 \cr } } \right]$$ and

adj $$M = \left[ {\matrix{ { - 1} & 1 & { - 1} \cr 8 & { - 6} & 2 \cr { - 5} & 3 & { - 1} \cr } } \right]$$

where a and b are real numbers. Which of the following options is/are correct?
A
det(adj M2) = 81
B
If $$M\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 1 \cr 2 \cr 3 \cr } } \right]$$, then $$\alpha - \beta + \gamma = 3$$
C
$${(adj\,M)^{ - 1}} + adj\,{M^{ - 1}} = - M$$
D
a + b = 3
2
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let S be the set of all column matrices $$\left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr {{b_3}} \cr } } \right]$$ such that $${b_1},{b_2},{b_3} \in R$$ and the system of equations (in real variables)

$$\eqalign{ & - x + 2y + 5z = {b_1} \cr & 2x - 4y + 3z = {b_2} \cr & x - 2y + 2z = {b_3} \cr} $$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution for each $$\left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr {{b_3}} \cr } } \right]$$$$ \in $$S?
A
$$x + 2y + 3z = {b_1}$$, $$\,4y + 5z = {b_2}$$ and $$x + 2y + 6z = {b_3}$$
B
$$x + y + 3z = {b_1}$$, $$5x + 2y + 6z = {b_2}$$ and $$ - 2x - y - 3z = {b_3}$$
C
$$ - x + 2y - 5z = {b_1}$$, $$\,2x - 4y + 10z = {b_2}$$ and $$x - 2y + 5z = {b_3}$$
D
$$x + 2y + 5z = {b_1}$$, $$2x + 3z = {b_2}$$ and $$x + 4y - 5z = {b_3}$$
3
JEE Advanced 2017 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Which of the following is(are) NOT the square of a 3 $$ \times $$ 3 matrix with real entries?
A
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & { - 1} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & { - 1} & 0 \cr 0 & 0 & { - 1} \cr } } \right]$$
C
$$\left[ {\matrix{ { - 1} & 0 & 0 \cr 0 & { - 1} & 0 \cr 0 & 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
4
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language

Let a, $$\lambda$$, m $$\in$$ R. Consider the system of linear equations

ax + 2y = $$\lambda$$

3x $$-$$ 2y = $$\mu$$

Which of the following statements is(are) correct?

A
If a = $$-$$3, then the system has infinitely many solutions for all values of $$\lambda$$ and $$\mu$$.
B
If a $$\ne$$ $$-$$3, then the system has a unique solution for all values of $$\lambda$$ and $$\mu$$.
C
If $$\lambda$$ + $$\mu$$ = 0, then the system has infinitely many solutions for a = $$-$$3.
D
If $$\lambda$$ + $$\mu$$ $$\ne$$ 0, then the system has no solution for a = -3.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12