1
JEE Advanced 2021 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
For any 3 $$\times$$ 3 matrix M, let | M | denote the determinant of M. Let

$$E = \left[ {\matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 8 & {13} & {18} \cr } } \right]$$, $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$ and $$F = \left[ {\matrix{ 1 & 3 & 2 \cr 8 & {18} & {13} \cr 2 & 4 & 3 \cr } } \right]$$

If Q is a nonsingular matrix of order 3 $$\times$$ 3, then which of the following statements is(are) TRUE?
A
F = PEP and $${P^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
B
| EQ + PFQ$$-$$1 | = | EQ | + | PFQ$$-$$1 |
C
| (EF)3 | > | EF |2
D
Sum of the diagonal entries of P$$-$$1EP + F is equal to the sum of diagonal entries of E + P$$-$$1FP
2
JEE Advanced 2021 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
For any 3 $$\times$$ 3 matrix M, let |M| denote the determinant of M. Let I be the 3 $$\times$$ 3 identity matrix. Let E and F be two 3 $$\times$$ 3 matrices such that (I $$-$$ EF) is invertible. If G = (I $$-$$ EF)$$-$$1, then which of the following statements is (are) TRUE?
A
| FE | = | I $$-$$ FE| | FGE |
B
(I $$-$$ FE)(I + FGE) = I
C
EFG = GEF
D
(I $$-$$ FE)(I $$-$$ FGE) = I
3
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Let M be a 3 $$ \times $$ 3 invertible matrix with real entries and let I denote the 3 $$ \times $$ 3 identity matrix. If M$$-$$1 = adj(adj M), then which of the following statements is/are ALWAYS TRUE?
A
M = I
B
det M = 1
C
M2 = I
D
(adj M)2 = I
4
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
Let x $$ \in $$ R and let $$P = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$, $$Q = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]$$ and R = PQP$$-$$1, which of the following options is/are correct?
A
There exists a real, number x such that PQ = QP
B
For $$x = 0$$, if $$R \left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$, then a + b =5
C
For x = 1, there exists a unit vector $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ for which $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
D
$$\det R = \det \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 8$$, for all x $$ \in $$ R
JEE Advanced Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN