NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2021 Paper 1 Online

MCQ (More than One Correct Answer)
For any 3 $$\times$$ 3 matrix M, let |M| denote the determinant of M. Let I be the 3 $$\times$$ 3 identity matrix. Let E and F be two 3 $$\times$$ 3 matrices such that (I $$-$$ EF) is invertible. If G = (I $$-$$ EF)$$-$$1, then which of the following statements is (are) TRUE?
A
| FE | = | I $$-$$ FE| | FGE |
B
(I $$-$$ FE)(I + FGE) = I
C
EFG = GEF
D
(I $$-$$ FE)(I $$-$$ FGE) = I

Explanation

$$\because$$ I $$-$$ EF = G$$-$$1 $$\Rightarrow$$ G $$-$$ GEF = I ..... (i)

and G $$-$$ EFG = I ..... (ii)

Clearly, GEF = EFG $$\to$$ option (c) is correct.

Also, (I $$-$$ FE) (I + FGE)

= I $$-$$ FE + FGE $$-$$ FEFGE

= I $$-$$ FE + FGE $$-$$ F(G $$-$$ I) E

= I $$-$$ FE + FGE $$-$$ FGE + FE

= I $$\to$$ option (b) is correct but option (d) is incorrect.

$$\because$$ (I $$-$$ FE) (I $$-$$ FGE) = I $$-$$ FE $$-$$ FGE + F(G $$-$$ I) E

= I $$-$$ 2FE

Now, (I $$-$$ FE) ($$-$$ FGE) = $$-$$ FE

$$\Rightarrow$$ | I $$-$$ FE | | FGE | = | FE |

$$\to$$ option (a) is correct.
2

JEE Advanced 2021 Paper 1 Online

MCQ (More than One Correct Answer)
For any 3 $$\times$$ 3 matrix M, let | M | denote the determinant of M. Let

$$E = \left[ {\matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 8 & {13} & {18} \cr } } \right]$$, $$P = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 3 & 1 \cr 0 & 1 & 0 \cr } } \right]$$ and $$F = \left[ {\matrix{ 1 & 3 & 2 \cr 8 & {18} & {13} \cr 2 & 4 & 3 \cr } } \right]$$

If Q is a nonsingular matrix of order 3 $$\times$$ 3, then which of the following statements is(are) TRUE?
A
F = PEP and $${P^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 1 & 1 \cr } } \right]$$
B
| EQ + PFQ$$-$$1 | = | EQ | + | PFQ$$-$$1 |
C
| (EF)3 | > | EF |2
D
Sum of the diagonal entries of P$$-$$1EP + F is equal to the sum of diagonal entries of E + P$$-$$1FP

Explanation

For option (a)

$$PEP = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]\left[ {\matrix{ 1 & 2 & 3 \cr 2 & 3 & 4 \cr 8 & {13} & {18} \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]$$

$$ = \left[ {\matrix{ 1 & 2 & 3 \cr 8 & {13} & {18} \cr 2 & 3 & 4 \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right] = \left[ {\matrix{ 1 & 3 & 2 \cr 8 & {18} & {13} \cr 2 & 4 & 3 \cr } } \right] = F$$

and $${P^2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right]\left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$

Hence, option (a) is correct.

For option (b)

$$\left| {EQ + PF{Q^{ - 1}}} \right| = \left| {EQ} \right| + \left| {PF{Q^{ - 1}}} \right|$$ .... (i)

$$\because$$ | E | = 0 and | F | = 0 and | Q | $$\ne$$ 0

$$\therefore$$ $$\left| {EQ} \right| = \left| E \right|\left| Q \right| = 0$$

and $$\left| {PF{Q^{ - 1}}} \right| = {{\left| P \right|\left| F \right|} \over {\left| Q \right|}} = 0$$

Let $$R = EQ + PF{Q^{ - 1}}$$ .... (ii)

$$ \Rightarrow RQ = E{Q^2} + PF = E{Q^2} + {P^2}EP = E{Q^2} + EP$$ [$$\because$$ P2 = I]

$$ = E({Q^2} + P)$$

$$ \Rightarrow \left| {RQ} \right| = \left| {E({Q^2} + P)} \right|$$

$$ \Rightarrow \left| R \right|\left| Q \right| = \left| E \right|\left| {{Q^2} + P} \right| = 0$$ [$$\because$$ | E | = O]

$$ \Rightarrow \left| R \right| = 0$$ (as $$\left| Q \right| \ne 0$$) ..... (iii)

From Eqs. (ii) and (iii), we get Eq. (i) is true.

Hence, option (b) is correct.

For option (c)

$$\left| {{{(EF)}^3}} \right| > {\left| {EF} \right|^2}$$

i.e. 0 > 0 which is false.

For option (d)

$$\because$$ $${P^2} = I \Rightarrow {P^{ - 1}} = P$$

$$\therefore$$ $${P^{ - 1}}FP = PFP = PPEPP = E$$

So, $$E + {P^{ - 1}}FP = E + E = 2E$$

$$ \Rightarrow Tr(E + {P^{ - 1}}FP) = Tr(2E) = 2Tr(E)$$ ..... (iv)

and $${P^{ - 1}}EP + F$$

$$ \Rightarrow PEP + F = 2PEP$$ [$$\because$$ F = PEP]

$$\therefore$$ $$Tr(2PEP) = 2Tr(PEP) = 2Tr(F) = 2Tr(E)$$ ..... (v)

From Eqs. (iv) and (v) option (d) is also correct.
3

JEE Advanced 2020 Paper 1 Offline

MCQ (More than One Correct Answer)
Let M be a 3 $$ \times $$ 3 invertible matrix with real entries and let I denote the 3 $$ \times $$ 3 identity matrix. If M$$-$$1 = adj(adj M), then which of the following statements is/are ALWAYS TRUE?
A
M = I
B
det M = 1
C
M2 = I
D
(adj M)2 = I

Explanation

It is given that matrix M be a 3 $$ \times $$ 3 invertible matrix, such that

M$$-$$1 = adj(adj M) $$ \Rightarrow $$ M$$-$$1 = |M| M

($$ \because $$ for a matrix A of order 'n' adj(adjA) = |A|n$$-$$2 A}

$$ \Rightarrow $$ M$$-$$1 M = |M|M2 $$ \Rightarrow $$ M2|M| = I .....(i)

$$ \because $$ det(M2 |M|) = det(I) = 1

$$ \Rightarrow $$ |M|3|M|2 = 1 $$ \Rightarrow $$ |M| = 1 .....(ii)

from Eqs. (i) and (ii), we get

M2 = I

As, adj M = |M|M$$-$$1 = M

$$ \Rightarrow $$ (adj M)2 = M2 (adj M)2 = I
4

JEE Advanced 2019 Paper 2 Offline

MCQ (More than One Correct Answer)
$${P_1} = I = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right],\,{P_3} = \left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_4} = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right],\,{P_5} = \left[ {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr } } \right],\,{P_6} = \left[ {\matrix{ 0 & 0 & 1 \cr 0 & 1 & 0 \cr 1 & 0 & 0 \cr } } \right]$$ and $$X = \sum\limits_{k = 1}^6 {{P_k}} \left[ {\matrix{ 2 & 1 & 3 \cr 1 & 0 & 2 \cr 3 & 2 & 1 \cr } } \right]P_k^T$$

where $$P_k^T$$ denotes the transpose of the matrix Pk. Then which of the following option is/are correct?
A
X is a symmetric matrix
B
The sum of diagonal entries of X is 18
C
X $$-$$ 30I is an invertible matrix
D
If $$X\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \alpha \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, then $$\alpha = 30$$

Explanation

$${P_1} = I = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_2} = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & 1 & 0 \cr } } \right],\,{P_3} = \left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right],\,{P_4} = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 1 & 0 & 0 \cr } } \right],\,{P_5} = \left[ {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 1 & 0 \cr } } \right],\,{P_6} = \left[ {\matrix{ 0 & 0 & 1 \cr 0 & 1 & 0 \cr 1 & 0 & 0 \cr } } \right]$$ and $$X = \sum\limits_{k = 1}^6 {{P_k}} \left[ {\matrix{ 2 & 1 & 3 \cr 1 & 0 & 2 \cr 3 & 2 & 1 \cr } } \right]P_k^T$$

$$ \because $$ $$P_1^T = {P_1},\,P_2^T = {P_2},\,P_3^T = {P_3},\,P_4^T = {P_5},\,P_5^T = {P_4}$$ and $$P_6^T = {P_6}$$

and Let $$Q = \left[ {\matrix{ 2 & 1 & 3 \cr 1 & 0 & 2 \cr 3 & 2 & 1 \cr } } \right]$$

and $$ \because $$ QT = Q

Now,

$$X = ({P_1}QP_1^T) + ({P_2}QP_2^T) + ({P_3}QP_3^T) + ({P_4}QP_4^T) + ({P_5}QP_5^T) + ({P_6}QP_6^T)$$

So, $${X^T} = {({P_1}QP_1^T)^T} + {({P_2}QP_2^T)^T} + {({P_3}QP_3^T)^T} + {({P_4}QP_4^T)^T} + {({P_5}QP_5^T)^T} + {({P_6}QP_6^T)^T}$$

= $${P_1}QP_1^T$$ + $${P_2}QP_2^T$$ + $${P_3}QP_3^T$$ + $${P_4}QP_4^T$$ + $${P_5}QP_5^T$$ + $${P_6}QP_6^T$$

[$$ \because $$ (ABC)T = CTBTAT and (AT)T = A and QT = Q]

$$ \Rightarrow $$ XT = X

$$ \Rightarrow $$ X is a symmetric matrix.

The sum of diagonal entries of X = Tr(X)

$$ = \sum\limits_{i = 1}^6 {{T_r}({P_i}QP_i^T) = \sum\limits_{i = 1}^6 {{T_r}(QP_i^T{P_i})} } $$ [$$ \because $$ Tr(ABC) = Tr(BCA)]

$$ = \sum\limits_{i = 1}^6 {{T_r}(QI)} $$

[$$ \because $$ Pi's are orthogonal matrices]

$$ = \sum\limits_{i = 1}^6 {{T_r}(Q) = 6{T_r}(Q) = 6 \times 3 = 18} $$

Now, Let $$R = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, then

$$XR = \sum\limits_{K = 1}^6 {({P_K}} QP_K^T)R = \sum\limits_{K = 1}^6 {({P_K}QP_K^TR)} $$

$$ = \sum\limits_{K = 1}^6 {({P_K}QR)} $$ [$$ \because $$ $$P_K^T$$R = R]

$$ = \sum\limits_{K = 1}^6 {{P_K}\left[ {\matrix{ 6 \cr 3 \cr 6 \cr } } \right]} $$

$$ = \sum\limits_{K = 1}^6 {{P_K}\left[ {\matrix{ 6 \cr 3 \cr 6 \cr } } \right]} = \left[ {\matrix{ 2 & 2 & 2 \cr 2 & 2 & 2 \cr 2 & 2 & 2 \cr } } \right]\left[ {\matrix{ 6 \cr 3 \cr 6 \cr } } \right]$$

$$ \Rightarrow XR = \left[ {\matrix{ {30} \cr {30} \cr {30} \cr } } \right] \Rightarrow XR = 30R$$

$$ \Rightarrow X\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = 30\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$

$$ \Rightarrow $$ (X $$-$$ 30I) R = 0 $$ \Rightarrow $$ |X $$-$$ 30I| = 0

So, (X $$-$$ 30I) is not invertible and value of $$\alpha $$ = 30.

Hence, options (a), (b) and (d) are correct.

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12