1
JEE Advanced 2016 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2

Let a, $$\lambda$$, m $$\in$$ R. Consider the system of linear equations

ax + 2y = $$\lambda$$

3x $$-$$ 2y = $$\mu$$

Which of the following statements is(are) correct?

A
If a = $$-$$3, then the system has infinitely many solutions for all values of $$\lambda$$ and $$\mu$$.
B
If a $$\ne$$ $$-$$3, then the system has a unique solution for all values of $$\lambda$$ and $$\mu$$.
C
If $$\lambda$$ + $$\mu$$ = 0, then the system has infinitely many solutions for a = $$-$$3.
D
If $$\lambda$$ + $$\mu$$ $$\ne$$ 0, then the system has no solution for a = -3.
2
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Let $$P = \left[ {\matrix{ 3 & { - 1} & { - 2} \cr 2 & 0 & \alpha \cr 3 & { - 5} & 0 \cr } } \right]$$, where $$\alpha$$ $$\in$$ R. Suppose $$Q = [{q_{ij}}]$$ is a matrix such that PQ = kl, where k $$\in$$ R, k $$\ne$$ 0 and I is the identity matrix of order 3. If $${q_{23}} = - {k \over 8}$$ and $$\det (Q) = {{{k^2}} \over 2}$$, then

A
$$\alpha$$ = 0, k = 8
B
$$4\alpha - k + 8 = 0$$
C
$$\det (Padj(Q)) = {2^9}$$
D
$$\det (Qadj(P)) = {2^{13}}$$
3
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Let X and Y be two arbitrary, 3 $$\times$$ 3, non-zero, skew-symmetric matrices and Z be an arbitrary 3 $$\times$$ 3, non-zero, symmetric matrix. Then which of the following matrices is(are) skew symmetric?

A
Y3Z4 $$-$$ Z4Y3
B
X44 + Y44
C
X4Z3 $$-$$ Z3X4
D
X23 + Y23
4
JEE Advanced 2015 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2

Which of the following values of $$\alpha$$ satisfy the equation

$$\left| {\matrix{ {{{(1 - \alpha )}^2}} & {{{(1 + 2\alpha )}^2}} & {{{(1 + 3\alpha )}^2}} \cr {{{(2 + \alpha )}^2}} & {{{(2 + 2\alpha )}^2}} & {{{(2 + 3\alpha )}^2}} \cr {{{(3 + \alpha )}^2}} & {{{(3 + 2\alpha )}^2}} & {{{(3 + 3\alpha )}^2}} \cr } } \right| = - 648\alpha$$ ?

A
$$-$$4
B
9
C
$$-$$9
D
4
EXAM MAP
Medical
NEET