1
IIT-JEE 1987
Subjective
+3
-0
Let a given line $$L_1$$ intersects the x and y axes at P and Q, respectively. Let another line $$L_2$$, perpendicular to $$L_1$$, cut the x and y axes at R and S, respectively. Show that the locus of the point of intersection of the lines PS and QR is a circle passing through the origin.
2
IIT-JEE 1986
Subjective
+5
-0
Lines 5x + 12y - 10 = 0 and 5x - 12y - 40 = 0 touch a circle $$C_1$$ of diameter 6. If the centre of $$C_1$$ lies in the first quadrant, find the equation of the circle $$C_2$$ which is concentric with $$C_1$$ and cuts intercepts of length 8 on these lines.
3
IIT-JEE 1984
Subjective
+4
-0
The abscissa of the two points A and B are the roots of the equation $${x^2}\, + \,2ax\, - {b^2} = 0$$ and their ordinates are the roots of the equation $${x^2}\, + \,2px\, - {q^2} = 0$$. Find the equation and the radius of the circle with AB as diameter.
4
IIT-JEE 1983
Subjective
+5
-0
Through a fixed point (h, k) secants are drawn to the circle $$\,{x^2}\, + \,{y^2} = \,{r^2}$$. Show that the locus of the mid-points of the secants intercepted by the circle is $$\,{x^2}\, + \,{y^2} $$ = $$hx + ky$$.
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12