NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 1992

Subjective
Let a circle be given by 2x (x - a) + y (2y - b) = 0, $$(a\, \ne \,0,\,\,b\, \ne 0)$$. Find the condition on a abd b if two chords, each bisected by the x-axis, can be drawn to the circle from $$\left( {a,\,\,{b \over 2}} \right)$$.

$${a^2}\, > \,2\,{b^2}$$
2

### IIT-JEE 1991

Subjective
Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangent is 4x + 3y = 10, find the equation of the circles.

$${x^2}\, + \,{y^2} + 6x\, + 2y - 15\, = 0$$ and
$${x^2}\, + \,{y^2} - 10x\, - 10y + 25\, = 0$$
3

### IIT-JEE 1990

Subjective
A circle touches the line y = x at a point P such that OP = $${4\sqrt 2 \,}$$, where O is the origin. The circle contains the point (- 10, 2) in its interior and the length of its chord on the line x + y = 0 is $${6\sqrt 2 \,}$$. Determine the equation of the circle.

$${x^2}\, + {y^2} + \,18x\, - 2y\, + 32\, = 0$$
4

### IIT-JEE 1989

Subjective
If $$\left( {{m_i},{1 \over {{m_i}}}} \right),\,{m_i}\, > \,0,\,i\, = 1,\,2,\,3,\,4$$ are four distinct points on a circle, then show that $${m_1}\,{m_2}\,{m_3}\,{m_4}\, = 1$$

solve it

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12