1
IIT-JEE 1993
Subjective
+5
-0
Consider a family of circles passing through two fixed points A (3, 7) and B (6, 5). Show that the chords on which the circle $${x^2}\, + \,{y^2} - \,4x - \,6y - 3 = 0$$ cuts the members of the family are concurrent at a point. Find the coordinate of this point.
2
IIT-JEE 1992
Subjective
+6
-0
Let a circle be given by 2x (x - a) + y (2y - b) = 0, $$(a\, \ne \,0,\,\,b\, \ne 0)$$. Find the condition on a abd b if two chords, each bisected by the x-axis, can be drawn to the circle from $$\left( {a,\,\,{b \over 2}} \right)$$.
3
IIT-JEE 1991
Subjective
+4
-0
Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangent is 4x + 3y = 10, find the equation of the circles.
4
IIT-JEE 1990
Subjective
+5
-0
A circle touches the line y = x at a point P such that OP = $${4\sqrt 2 \,}$$, where O is the origin. The circle contains the point (- 10, 2) in its interior and the length of its chord on the line x + y = 0 is $${6\sqrt 2 \,}$$. Determine the equation of the circle.
EXAM MAP
Medical
NEET