NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

### IIT-JEE 2003

Subjective
Find a point on the curve $${x^2} + 2{y^2} = 6$$ whose distance from
the line $$x+y=7$$, is minimum.

$$(2, 1)$$
2

### IIT-JEE 2001

Subjective
Let $$- 1 \le p \le 1$$. Show that the equation $$4{x^3} - 3x - p = 0$$
has a unique root in the interval $$\left[ {1/2,\,1} \right]$$ and identify it.

Solve it.
3

### IIT-JEE 2000

Subjective
Suppose $$p\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + .......... + {a_n}{x^n}.$$ If
$$\left| {p\left( x \right)} \right| \le \left| {{e^{x - 1}} - 1} \right|$$ for all $$x \ge 0$$, prove that
$$\left| {{a_1} + 2{a_2} + ........ + n{a_n}} \right| \le 1$$.

Solve it.
4

### IIT-JEE 1998

Subjective
Suppose $$f(x)$$ is a function satisfying the following conditions
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr }$$\$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.

$$a = {1 \over 4},\,\,b = - {5 \over 4}$$
$$f\left( x \right) = {1 \over 4}{x^2} - {5 \over 4}x + 2$$

### Joint Entrance Examination

JEE Main JEE Advanced WB JEE

### Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

NEET

Class 12