Find all possible real values of $$b$$ such that $$f(x)$$ has the smallest value at $$x=1$$.
Let the functions defined in column $$I$$ have domain $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$
$$\,\,\,\,$$Column $$I$$
(A) $$x + \sin x$$
(B) $$\sec x$$
$$\,\,\,\,$$Column $$II$$
(p) increasing
(q) decreasing
(r) neither increasing nor decreasing