1
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
Change Language
Suppose

det$$\left| {\matrix{ {\sum\limits_{k = 0}^n k } & {\sum\limits_{k = 0}^n {{}^n{C_k}{k^2}} } \cr {\sum\limits_{k = 0}^n {{}^n{C_k}.k} } & {\sum\limits_{k = 0}^n {{}^n{C_k}{3^k}} } \cr } } \right| = 0$$

holds for some positive integer n. Then $$\sum\limits_{k = 0}^n {{{{}^n{C_k}} \over {k + 1}}} $$ equals ..............
Your input ____
2
JEE Advanced 2018 Paper 2 Offline
Numerical
+3
-0
Change Language
Let P be a matrix of order 3 $$ \times $$ 3 such that all the entries in P are from the set {$$-$$1, 0, 1}. Then, the maximum possible value of the determinant of P is ............ .
Your input ____
3
JEE Advanced 2017 Paper 1 Offline
Numerical
+3
-0
Change Language
For a real number $$\alpha $$, if the system

$$\left[ {\matrix{ 1 & \alpha & {{\alpha ^2}} \cr \alpha & 1 & \alpha \cr {{\alpha ^2}} & \alpha & 1 \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr { - 1} \cr 1 \cr } } \right]$$

of linear equations, has infinitely many solutions, then 1 + $$\alpha $$ + $$\alpha $$2 =
Your input ____
4
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
Change Language

The total number of distinct x $$\in$$ R for which

$$\left| {\matrix{ x & {{x^2}} & {1 + {x^3}} \cr {2x} & {4{x^2}} & {1 + 8{x^3}} \cr {3x} & {9{x^2}} & {1 + 27{x^3}} \cr } } \right| = 10$$ is ______________.

Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12