1
JEE Advanced 2023 Paper 2 Online
Numerical
+4
-0
Let $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$.

Then the number of invertible matrices in $R$ is :
2
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1 Let $\beta$ be a real number. Consider the matrix

$$A=\left(\begin{array}{ccc} \beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2 \end{array}\right)$$

If $A^{7}-(\beta-1) A^{6}-\beta A^{5}$ is a singular matrix, then the value of $9 \beta$ is _________.
3
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1 The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2 $$\times$$ 2 matrix such that the trace of A is 3 and the trace of A3 is $$-$$18, then the value of the determinant of A is .............
4
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0 Suppose

det$$\left| {\matrix{ {\sum\limits_{k = 0}^n k } & {\sum\limits_{k = 0}^n {{}^n{C_k}{k^2}} } \cr {\sum\limits_{k = 0}^n {{}^n{C_k}.k} } & {\sum\limits_{k = 0}^n {{}^n{C_k}{3^k}} } \cr } } \right| = 0$$

holds for some positive integer n. Then $$\sum\limits_{k = 0}^n {{{{}^n{C_k}} \over {k + 1}}}$$ equals ..............
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination