$$\left[ {\matrix{ 1 & \alpha & {{\alpha ^2}} \cr \alpha & 1 & \alpha \cr {{\alpha ^2}} & \alpha & 1 \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 1 \cr { - 1} \cr 1 \cr } } \right]$$
of linear equations, has infinitely many solutions, then 1 + $$\alpha $$ + $$\alpha $$2 =
The total number of distinct x $$\in$$ R for which
$$\left| {\matrix{ x & {{x^2}} & {1 + {x^3}} \cr {2x} & {4{x^2}} & {1 + 8{x^3}} \cr {3x} & {9{x^2}} & {1 + 27{x^3}} \cr } } \right| = 10$$ is ______________.
Let $$z = {{ - 1 + \sqrt 3 i} \over 2}$$, where $$i = \sqrt { - 1} $$, and r, s $$\in$$ {1, 2, 3}. Let $$P = \left[ {\matrix{ {{{( - z)}^r}} & {{z^{2s}}} \cr {{z^{2s}}} & {{z^r}} \cr } } \right]$$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which P2 = $$-$$I is ____________.
Let M be a 3 $$\times$$ 3 matrix satisfying $$M\left[ {\matrix{ 0 \cr 1 \cr 0 \cr } } \right] = \left[ {\matrix{ { - 1} \cr 2 \cr 3 \cr } } \right]$$, $$M\left[ {\matrix{ 1 \cr { - 1} \cr 0 \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr { - 1} \cr } } \right]$$ and $$M\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr {12} \cr } } \right]$$. Then the sum of the diagonal entries of M is ___________.