1
JEE Advanced 2016 Paper 1 Offline
Numerical
+3
-0
Change Language

Let $$z = {{ - 1 + \sqrt 3 i} \over 2}$$, where $$i = \sqrt { - 1} $$, and r, s $$\in$$ {1, 2, 3}. Let $$P = \left[ {\matrix{ {{{( - z)}^r}} & {{z^{2s}}} \cr {{z^{2s}}} & {{z^r}} \cr } } \right]$$ and I be the identity matrix of order 2. Then the total number of ordered pairs (r, s) for which P2 = $$-$$I is ____________.

Your input ____
2
IIT-JEE 2011 Paper 2 Offline
Numerical
+3
-1

Let M be a 3 $$\times$$ 3 matrix satisfying $$M\left[ {\matrix{ 0 \cr 1 \cr 0 \cr } } \right] = \left[ {\matrix{ { - 1} \cr 2 \cr 3 \cr } } \right]$$, $$M\left[ {\matrix{ 1 \cr { - 1} \cr 0 \cr } } \right] = \left[ {\matrix{ 1 \cr 1 \cr { - 1} \cr } } \right]$$ and $$M\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr {12} \cr } } \right]$$. Then the sum of the diagonal entries of M is ___________.

Your input ____
3
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0

Let $k$ be a positive real number and let

$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$

If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$

is equal to _________.

[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].

Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12