NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2008

MCQ (Single Correct Answer)
Consider the functions defined implicitly by the equation
$${y^3} - 3y + x = 0$$ on various intervals in the real line. If
$$x \in \left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right),$$ the equation implicitly defines a unique
real valued differentiable function $$y = f\left( x \right).$$ If $$x \in \left( { - 2,2} \right),$$ the
equation implicitly defines a unique real valued differentiable function
$$y=g(x)$$ satisfying $$g(0)=0.$$

If $$f\left( { - 10\sqrt 2 } \right) = 2\sqrt 2 ,$$ then $$f''\left( { - 10\sqrt 2 } \right) = $$

A
$${{4\sqrt 2 } \over {{7^3}{3^2}}}$$
B
$$-{{4\sqrt 2 } \over {{7^3}{3^2}}}$$
C
$${{4\sqrt 2 } \over {{7^3}3}}$$
D
$$-{{4\sqrt 2 } \over {{7^3}3}}$$
2

IIT-JEE 2008

MCQ (Single Correct Answer)
The area of the region between the curves $$y = \sqrt {{{1 + \sin x} \over {\cos x}}} $$
and $$y = \sqrt {{{1 - \sin x} \over {\cos x}}} $$ bounded by the lines $$x=0$$ and $$x = {\pi \over 4}$$ is
A
$$\int\limits_0^{\sqrt 2 - 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
B
$$\int\limits_0^{\sqrt 2 - 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
C
$$\int\limits_0^{\sqrt 2 + 1} {{4t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
D
$$\int\limits_0^{\sqrt 2 + 1} {{t \over {\left( {1 + {t^2}} \right)\sqrt {1 - {t^2}} }}dt} $$
3

IIT-JEE 2006

MCQ (Single Correct Answer)
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$f''\left( x \right) < 0\,\forall x \in \left( {a,b} \right)$$ and $$c$$ is a point such that $$a < c < b,$$ and
$$\left( {c,f\left( c \right)} \right)$$ is the point lying on the curve for which $$F(c)$$ is
maximum, then $$f'(c)$$ is equal to

A
$${{f\left( b \right) - f\left( a \right)} \over {b - a}}$$
B
$${{2\left( {f\left( b \right)} \right) - f\left( a \right)} \over {b - a}}$$
C
$${{2f\left( b \right) - f\left( a \right)} \over {2b - a}}$$
D
$$0$$
4

IIT-JEE 2006

MCQ (Single Correct Answer)
Let the definite integral be defined by the formula
$$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 2}\left( {f\left( a \right) + f\left( b \right)} \right).} $$ For more accurate result for
$$c \in \left( {a,b} \right),$$ we can use $$\int\limits_a^b {f\left( x \right)dx = \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx = F\left( c \right)} } } $$ so
that for $$c = {{a + b} \over 2},$$ we get $$\int\limits_a^b {f\left( x \right)dx = {{b - a} \over 4}\left( {f\left( a \right) + f\left( b \right) + 2f\left( c \right)} \right).} $$

If $$\mathop {\lim }\limits_{x \to a} {{\int\limits_a^x {f\left( x \right)dx - \left( {{{x - a} \over 2}} \right)\left( {f\left( x \right) + f\left( a \right)} \right)} } \over {{{\left( {x - a} \right)}^3}}} = 0,\,\,$$ then $$f(x)$$ is
of maximum degree

A
$$4$$
B
$$3$$
C
$$2$$
D
$$1$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12