1
GATE ECE 2022
Numerical
+2
-0

Consider a real valued source whose samples are independent and identically distributed random variables with the probability density function, f(x), as shown in the figure.

GATE ECE 2022 Communications - Random Signals and Noise Question 8 English

Consider a 1 bit quantizer that maps positive samples to value $$\alpha$$ and others to value $$\beta$$. If $$\alpha$$* and $$\beta$$* are the respective choices for $$\alpha$$ and $$\beta$$ that minimize the mean square quantization error, then ($$\alpha$$* $$-$$ $$\beta$$*) = ___________ (rounded off to two decimal places).

Your input ____
2
GATE ECE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$X(t)$$ be a wide sense stationary random process with the power spectral density $${S_x}\left( f \right)$$ as shown in figure (a), where $$f$$ is in Hertz $$(Hz)$$. The random process $$X(t)$$ is input to an ideal low pass filter with the frequency response $$$H\left( f \right) = \left\{ {\matrix{ {1,} & {\left| f \right| \le {1 \over 2}Hz} \cr {0,} & {\left| f \right| > {1 \over 2}Hz} \cr } } \right.$$$

As shown in Figure (b). The output of the low pass filter is $$y(t)$$.

GATE ECE 2017 Set 1 Communications - Random Signals and Noise Question 29 English 1 GATE ECE 2017 Set 1 Communications - Random Signals and Noise Question 29 English 2

Let $$E$$ be the expectation operator and consider the following statements :
$$\left( {\rm I} \right)$$ $$E\left( {X\left( t \right)} \right) = E\left( {Y\left( t \right)} \right)$$
$$\left( {{\rm I}{\rm I}} \right)$$ $$\,\,\,\,\,\,\,\,E\left( {{X^2}\left( t \right)} \right) = E\left( {{Y^2}\left( t \right)} \right)$$
$$\left( {{\rm I}{\rm I}{\rm I}} \right)\,$$ $$\,\,\,\,\,\,E\left( {{Y^2}\left( t \right)} \right) = 2$$

Select the correct option:

A
only $${\rm I}$$ is true
B
only $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
C
only $${\rm I}$$ and $${\rm I}$$$${\rm I}$$ are true
D
only $${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$ are true
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
A wide sense stationary random process $$X(t)$$ passes through the $$LTI$$ system shown in the figure. If the autocorrelation function of $$X(t)$$ is $${R_x}\left( \tau \right),$$ then the autocorrelation function $${R_x}\left( \tau \right),$$ of the output $$Y(t)$$ is equal to GATE ECE 2016 Set 3 Communications - Random Signals and Noise Question 30 English
A
$$2{R_X}\left( \tau \right) + {R_X}\left( {\tau - {T_0}} \right) + {R_X}\left( {\tau + {T_0}} \right)$$
B
$$2{R_X}\left( \tau \right) - {R_X}\left( {\tau - {T_0}} \right) - {R_X}\left( {\tau + {T_0}} \right)$$
C
$$2{R_X}\left( \tau \right) + 2{R_X}\left( {\tau - 2{T_0}} \right)$$
D
$$2{R_X}\left( \tau \right) - 2{R_X}\left( {\tau - 2{T_0}} \right)$$
4
GATE ECE 2016 Set 2
Numerical
+2
-0
Consider random process $$X(t) = 3V(t) - 8$$, where $$V$$ $$(t)$$ is a zero mean stationary random process with autocorrelation $${R_v}\left( \tau \right) = 4{e^{ - 5\left| \tau \right|}}$$. The power of $$X(t)$$ is _______.
Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12